Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991959472> ?p ?o ?g. }
- W2991959472 abstract "Mass and mass resolved angular distribution of the fission products have been measured in the $^{20}mathrm{Ne}+^{181}mathrm{Ta}$ reaction at ${E}_{mathrm{lab}}=150$ and 180 MeV using recoil catcher technique followed by off-line $ensuremath{gamma}$-ray spectrometry. Recoil range distribution (RRD) of the evaporation residues (ERs) have been measured at ${E}_{mathrm{lab}}=180$ MeV. Due to high angular momentum of the fissioning nucleus, variances of the mass distribution in the present system have been found to be higher than those in similar systems involving comparatively less angular momentum. Significant contribution from noncompound nucleus processes such as deep inelastic collisions (DIC) and incomplete fusion reaction (ICF) is expected in the present system due to high angular momentum. The code HICOL predicts that the noncompound nucleus process would result in fission like events. In the present study, experimental fission cross sections are in reasonably good agreement with the calculation of statistical model code PACE2. Measurement of the ER cross section indicates significant contribution from the ICF reaction. The recoil range distributions of the ERs could resolve the complete fusion (CF) and ICF channels and were used to obtain ICF cross section. The experimentally measured ICF cross section accounts for almost entire cross section between ${l}_{mathrm{crit}}$ and ${l}_{mathrm{max}}$, indicating ICF reaction to be the dominant non-compound nucleus process at beam energies of the present study. DIC products could not be detected at both the beam energies. At these beam energies, the entrance channel pocket configuration for many collision trajectories is expected to be more elongated compared to the unconditional saddle point and, therefore, significant contribution form noncompound nucleus fission (i.e., fission without passing through the unconditional saddle point) is expected. However, the experimental anisotropies of fission products could be reproduced by the statistical theory calculation after considering the change in the saddle point shape with angular momentum of the fissioning nucleus. No correlation between the angular anisotropy and mass asymmetry of the fission products was observed in the present study." @default.
- W2991959472 created "2019-12-13" @default.
- W2991959472 creator A5008178561 @default.
- W2991959472 creator A5015120899 @default.
- W2991959472 creator A5073891458 @default.
- W2991959472 creator A5077003007 @default.
- W2991959472 creator A5085384341 @default.
- W2991959472 date "2006-07-27" @default.
- W2991959472 modified "2023-10-16" @default.
- W2991959472 title "Fusion-fission studies in the<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mmultiscripts><mml:mi mathvariant=normal>Ne</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>20</mml:mn></mml:mrow></mml:mmultiscripts><mml:mo>+</mml:mo><mml:mmultiscripts><mml:mi mathvariant=normal>Ta</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>181</mml:mn></mml:mrow></mml:mmultiscripts></mml:math>reaction at<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML…" @default.
- W2991959472 cites W1483300569 @default.
- W2991959472 cites W1617901169 @default.
- W2991959472 cites W1969961517 @default.
- W2991959472 cites W1978504409 @default.
- W2991959472 cites W1979170758 @default.
- W2991959472 cites W1980602616 @default.
- W2991959472 cites W1996704215 @default.
- W2991959472 cites W1997300181 @default.
- W2991959472 cites W2007348380 @default.
- W2991959472 cites W2012012474 @default.
- W2991959472 cites W2012438885 @default.
- W2991959472 cites W2016086453 @default.
- W2991959472 cites W2026907745 @default.
- W2991959472 cites W2030450025 @default.
- W2991959472 cites W2032142850 @default.
- W2991959472 cites W2034072535 @default.
- W2991959472 cites W2034782694 @default.
- W2991959472 cites W2039448674 @default.
- W2991959472 cites W2041334531 @default.
- W2991959472 cites W2044849857 @default.
- W2991959472 cites W2047110453 @default.
- W2991959472 cites W2047328838 @default.
- W2991959472 cites W2052831230 @default.
- W2991959472 cites W2064526238 @default.
- W2991959472 cites W2069089415 @default.
- W2991959472 cites W2072290720 @default.
- W2991959472 cites W2082893749 @default.
- W2991959472 cites W2086989732 @default.
- W2991959472 cites W2093519316 @default.
- W2991959472 cites W2094022234 @default.
- W2991959472 cites W2095435735 @default.
- W2991959472 cites W2169605949 @default.
- W2991959472 cites W2260317653 @default.
- W2991959472 cites W2260731985 @default.
- W2991959472 cites W2325526134 @default.
- W2991959472 cites W2331428929 @default.
- W2991959472 cites W2399586582 @default.
- W2991959472 cites W2617524945 @default.
- W2991959472 cites W4239999421 @default.
- W2991959472 cites W4244263877 @default.
- W2991959472 doi "https://doi.org/10.1103/physrevc.74.014610" @default.
- W2991959472 hasPublicationYear "2006" @default.
- W2991959472 type Work @default.
- W2991959472 sameAs 2991959472 @default.
- W2991959472 citedByCount "10" @default.
- W2991959472 countsByYear W29919594722012 @default.
- W2991959472 countsByYear W29919594722015 @default.
- W2991959472 countsByYear W29919594722017 @default.
- W2991959472 countsByYear W29919594722018 @default.
- W2991959472 countsByYear W29919594722019 @default.
- W2991959472 countsByYear W29919594722022 @default.
- W2991959472 crossrefType "journal-article" @default.
- W2991959472 hasAuthorship W2991959472A5008178561 @default.
- W2991959472 hasAuthorship W2991959472A5015120899 @default.
- W2991959472 hasAuthorship W2991959472A5073891458 @default.
- W2991959472 hasAuthorship W2991959472A5077003007 @default.
- W2991959472 hasAuthorship W2991959472A5085384341 @default.
- W2991959472 hasConcept C10138342 @default.
- W2991959472 hasConcept C121332964 @default.
- W2991959472 hasConcept C12294094 @default.
- W2991959472 hasConcept C134222618 @default.
- W2991959472 hasConcept C152568617 @default.
- W2991959472 hasConcept C155675718 @default.
- W2991959472 hasConcept C159985019 @default.
- W2991959472 hasConcept C162324750 @default.
- W2991959472 hasConcept C184779094 @default.
- W2991959472 hasConcept C185544564 @default.
- W2991959472 hasConcept C192562407 @default.
- W2991959472 hasConcept C204323151 @default.
- W2991959472 hasConcept C206191943 @default.
- W2991959472 hasConcept C2776668124 @default.
- W2991959472 hasConcept C60718061 @default.
- W2991959472 hasConcept C62520636 @default.
- W2991959472 hasConcept C98444146 @default.
- W2991959472 hasConceptScore W2991959472C10138342 @default.
- W2991959472 hasConceptScore W2991959472C121332964 @default.
- W2991959472 hasConceptScore W2991959472C12294094 @default.
- W2991959472 hasConceptScore W2991959472C134222618 @default.
- W2991959472 hasConceptScore W2991959472C152568617 @default.
- W2991959472 hasConceptScore W2991959472C155675718 @default.
- W2991959472 hasConceptScore W2991959472C159985019 @default.
- W2991959472 hasConceptScore W2991959472C162324750 @default.
- W2991959472 hasConceptScore W2991959472C184779094 @default.
- W2991959472 hasConceptScore W2991959472C185544564 @default.
- W2991959472 hasConceptScore W2991959472C192562407 @default.
- W2991959472 hasConceptScore W2991959472C204323151 @default.
- W2991959472 hasConceptScore W2991959472C206191943 @default.
- W2991959472 hasConceptScore W2991959472C2776668124 @default.
- W2991959472 hasConceptScore W2991959472C60718061 @default.
- W2991959472 hasConceptScore W2991959472C62520636 @default.