Matches in SemOpenAlex for { <https://semopenalex.org/work/W2991967738> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2991967738 endingPage "101593" @default.
- W2991967738 startingPage "101593" @default.
- W2991967738 abstract "Given only a finite collection of points sampled from a Riemannian manifold embedded in a Euclidean space, in this paper we propose a new method to numerically solve elliptic and parabolic partial differential equations (PDEs) supplemented with boundary conditions. Since the construction of triangulations on unknown manifolds can be both difficult and expensive, both in terms of computational and data requirements, our goal is to solve these problems without a triangluation. Instead, we rely only on using the sample points to define quadrature formulas on the unknown manifold. Our main tool is the diffusion maps algorithm. We re-analyze this well-known method in a variational sense for manifolds with boundary. Our main result is that the variational diffusion maps graph Laplacian is a consistent estimator of the Dirichlet energy on the manifold. This improves upon previous results and provides a rigorous justification of the well-known relationship between diffusion maps and the Neumann eigenvalue problem. Moreover, using semigeodesic coordinates we derive the first uniform asymptotic expansion of the diffusion maps kernel integral operator for manifolds with boundary. This expansion relies on a novel lemma which relates the extrinsic Euclidean distance to the coordinate norm in a normal collar of the boundary. We then use a recently developed method of estimating the distance to boundary function (notice that the boundary location is assumed to be unknown) to construct a consistent estimator for boundary integrals. Finally, by combining these various estimators, we illustrate how to impose Dirichlet and Neumann conditions for some common PDEs based on the Laplacian. Several numerical examples illustrate our theoretical findings." @default.
- W2991967738 created "2019-12-13" @default.
- W2991967738 creator A5016427700 @default.
- W2991967738 creator A5021343350 @default.
- W2991967738 creator A5022515123 @default.
- W2991967738 date "2024-01-01" @default.
- W2991967738 modified "2023-10-16" @default.
- W2991967738 title "Diffusion maps for embedded manifolds with boundary with applications to PDEs" @default.
- W2991967738 cites W1492095942 @default.
- W2991967738 cites W1968165373 @default.
- W2991967738 cites W1978135292 @default.
- W2991967738 cites W1984032850 @default.
- W2991967738 cites W1985596537 @default.
- W2991967738 cites W1994083140 @default.
- W2991967738 cites W1994376651 @default.
- W2991967738 cites W1996314237 @default.
- W2991967738 cites W2039205468 @default.
- W2991967738 cites W2093015317 @default.
- W2991967738 cites W2097308346 @default.
- W2991967738 cites W2114257785 @default.
- W2991967738 cites W2603013708 @default.
- W2991967738 cites W2891337579 @default.
- W2991967738 cites W2962936676 @default.
- W2991967738 cites W2962963464 @default.
- W2991967738 cites W2963425138 @default.
- W2991967738 cites W2963687408 @default.
- W2991967738 cites W2967026314 @default.
- W2991967738 cites W4213367101 @default.
- W2991967738 doi "https://doi.org/10.1016/j.acha.2023.101593" @default.
- W2991967738 hasPublicationYear "2024" @default.
- W2991967738 type Work @default.
- W2991967738 sameAs 2991967738 @default.
- W2991967738 citedByCount "4" @default.
- W2991967738 countsByYear W29919677382018 @default.
- W2991967738 countsByYear W29919677382020 @default.
- W2991967738 countsByYear W29919677382021 @default.
- W2991967738 crossrefType "journal-article" @default.
- W2991967738 hasAuthorship W2991967738A5016427700 @default.
- W2991967738 hasAuthorship W2991967738A5021343350 @default.
- W2991967738 hasAuthorship W2991967738A5022515123 @default.
- W2991967738 hasConcept C105795698 @default.
- W2991967738 hasConcept C134306372 @default.
- W2991967738 hasConcept C151876577 @default.
- W2991967738 hasConcept C154945302 @default.
- W2991967738 hasConcept C163681178 @default.
- W2991967738 hasConcept C165700671 @default.
- W2991967738 hasConcept C185429906 @default.
- W2991967738 hasConcept C2779593128 @default.
- W2991967738 hasConcept C28826006 @default.
- W2991967738 hasConcept C33923547 @default.
- W2991967738 hasConcept C41008148 @default.
- W2991967738 hasConcept C55128770 @default.
- W2991967738 hasConcept C62354387 @default.
- W2991967738 hasConcept C70518039 @default.
- W2991967738 hasConceptScore W2991967738C105795698 @default.
- W2991967738 hasConceptScore W2991967738C134306372 @default.
- W2991967738 hasConceptScore W2991967738C151876577 @default.
- W2991967738 hasConceptScore W2991967738C154945302 @default.
- W2991967738 hasConceptScore W2991967738C163681178 @default.
- W2991967738 hasConceptScore W2991967738C165700671 @default.
- W2991967738 hasConceptScore W2991967738C185429906 @default.
- W2991967738 hasConceptScore W2991967738C2779593128 @default.
- W2991967738 hasConceptScore W2991967738C28826006 @default.
- W2991967738 hasConceptScore W2991967738C33923547 @default.
- W2991967738 hasConceptScore W2991967738C41008148 @default.
- W2991967738 hasConceptScore W2991967738C55128770 @default.
- W2991967738 hasConceptScore W2991967738C62354387 @default.
- W2991967738 hasConceptScore W2991967738C70518039 @default.
- W2991967738 hasFunder F4320306076 @default.
- W2991967738 hasFunder F4320338279 @default.
- W2991967738 hasLocation W29919677381 @default.
- W2991967738 hasOpenAccess W2991967738 @default.
- W2991967738 hasPrimaryLocation W29919677381 @default.
- W2991967738 hasRelatedWork W2023656248 @default.
- W2991967738 hasRelatedWork W2083739082 @default.
- W2991967738 hasRelatedWork W2742878359 @default.
- W2991967738 hasRelatedWork W2963048680 @default.
- W2991967738 hasRelatedWork W2964276467 @default.
- W2991967738 hasRelatedWork W2983630993 @default.
- W2991967738 hasRelatedWork W4287755993 @default.
- W2991967738 hasRelatedWork W4299681302 @default.
- W2991967738 hasRelatedWork W4379256233 @default.
- W2991967738 hasRelatedWork W2963098649 @default.
- W2991967738 hasVolume "68" @default.
- W2991967738 isParatext "false" @default.
- W2991967738 isRetracted "false" @default.
- W2991967738 magId "2991967738" @default.
- W2991967738 workType "article" @default.