Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992040930> ?p ?o ?g. }
- W2992040930 endingPage "2055" @default.
- W2992040930 startingPage "2042" @default.
- W2992040930 abstract "For hyperspectral images (HSIs), it is a challenging task to select discriminative bands due to the lack of labeled samples and complex noise. In this article, we present a novel local-view-assisted discriminative band selection method with hypergraph autolearning (LvaHAl) to solve these problems from both local and global perspectives. Specifically, the whole band space is first randomly divided into several subspaces (LVs) of different dimensions, where each LV denotes a set of low-dimensional representations of training samples consisting of bands associated with it. Then, for different LVs, a robust hinge loss function for isolated pixels regularized by the row-sparsity is adopted to measure the importance of the corresponding bands. In order to simultaneously reduce the bias of LVs and encode the complementary information between them, samples from all LVs are further projected into the label space. Subsequently, a hypergraph model that automatically learns the hyperedge weights is presented. In this way, the local manifold structure of these projections can be preserved, ensuring that samples of the same class have a small distance. Finally, a consensus matrix is used to integrate the importance of bands corresponding to different LVs, resulting in the optimal selection of expected bands from a global perspective. The classification experiments on three HSI data sets show that our method is competitive with other comparison methods." @default.
- W2992040930 created "2019-12-13" @default.
- W2992040930 creator A5019106042 @default.
- W2992040930 creator A5031510017 @default.
- W2992040930 creator A5055132508 @default.
- W2992040930 creator A5091601010 @default.
- W2992040930 date "2020-03-01" @default.
- W2992040930 modified "2023-10-15" @default.
- W2992040930 title "Local-View-Assisted Discriminative Band Selection With Hypergraph Autolearning for Hyperspectral Image Classification" @default.
- W2992040930 cites W1579487182 @default.
- W2992040930 cites W1932531222 @default.
- W2992040930 cites W1972293418 @default.
- W2992040930 cites W1986142393 @default.
- W2992040930 cites W1995295300 @default.
- W2992040930 cites W2005106632 @default.
- W2992040930 cites W2020089616 @default.
- W2992040930 cites W2041100636 @default.
- W2992040930 cites W2042294722 @default.
- W2992040930 cites W2043080228 @default.
- W2992040930 cites W2043945532 @default.
- W2992040930 cites W2048281487 @default.
- W2992040930 cites W2052561654 @default.
- W2992040930 cites W2052575990 @default.
- W2992040930 cites W2056621966 @default.
- W2992040930 cites W2063069198 @default.
- W2992040930 cites W2071185414 @default.
- W2992040930 cites W2071821878 @default.
- W2992040930 cites W2078183677 @default.
- W2992040930 cites W2078491260 @default.
- W2992040930 cites W2097900616 @default.
- W2992040930 cites W2098057602 @default.
- W2992040930 cites W2122111042 @default.
- W2992040930 cites W2125298866 @default.
- W2992040930 cites W2138038253 @default.
- W2992040930 cites W2143277109 @default.
- W2992040930 cites W2143426320 @default.
- W2992040930 cites W2150566919 @default.
- W2992040930 cites W2153635508 @default.
- W2992040930 cites W2162698522 @default.
- W2992040930 cites W2288723698 @default.
- W2992040930 cites W2292865806 @default.
- W2992040930 cites W2316226477 @default.
- W2992040930 cites W2340318445 @default.
- W2992040930 cites W2346140873 @default.
- W2992040930 cites W2465503420 @default.
- W2992040930 cites W2490201121 @default.
- W2992040930 cites W2514028694 @default.
- W2992040930 cites W2517660364 @default.
- W2992040930 cites W2572810799 @default.
- W2992040930 cites W2574404198 @default.
- W2992040930 cites W2595272553 @default.
- W2992040930 cites W2600941572 @default.
- W2992040930 cites W2603834682 @default.
- W2992040930 cites W2741786247 @default.
- W2992040930 cites W2742141965 @default.
- W2992040930 cites W2758611985 @default.
- W2992040930 cites W2758776802 @default.
- W2992040930 cites W2770149144 @default.
- W2992040930 cites W2770177916 @default.
- W2992040930 cites W2789249105 @default.
- W2992040930 cites W2793357412 @default.
- W2992040930 cites W2801324747 @default.
- W2992040930 cites W2811009023 @default.
- W2992040930 cites W2884773598 @default.
- W2992040930 cites W2913960921 @default.
- W2992040930 cites W2944359217 @default.
- W2992040930 cites W3102274762 @default.
- W2992040930 cites W3124270737 @default.
- W2992040930 doi "https://doi.org/10.1109/tgrs.2019.2952383" @default.
- W2992040930 hasPublicationYear "2020" @default.
- W2992040930 type Work @default.
- W2992040930 sameAs 2992040930 @default.
- W2992040930 citedByCount "15" @default.
- W2992040930 countsByYear W29920409302020 @default.
- W2992040930 countsByYear W29920409302021 @default.
- W2992040930 countsByYear W29920409302022 @default.
- W2992040930 countsByYear W29920409302023 @default.
- W2992040930 crossrefType "journal-article" @default.
- W2992040930 hasAuthorship W2992040930A5019106042 @default.
- W2992040930 hasAuthorship W2992040930A5031510017 @default.
- W2992040930 hasAuthorship W2992040930A5055132508 @default.
- W2992040930 hasAuthorship W2992040930A5091601010 @default.
- W2992040930 hasConcept C114614502 @default.
- W2992040930 hasConcept C12362212 @default.
- W2992040930 hasConcept C153180895 @default.
- W2992040930 hasConcept C154945302 @default.
- W2992040930 hasConcept C159078339 @default.
- W2992040930 hasConcept C160633673 @default.
- W2992040930 hasConcept C2524010 @default.
- W2992040930 hasConcept C2781221856 @default.
- W2992040930 hasConcept C33923547 @default.
- W2992040930 hasConcept C41008148 @default.
- W2992040930 hasConcept C81917197 @default.
- W2992040930 hasConcept C97931131 @default.
- W2992040930 hasConceptScore W2992040930C114614502 @default.
- W2992040930 hasConceptScore W2992040930C12362212 @default.
- W2992040930 hasConceptScore W2992040930C153180895 @default.
- W2992040930 hasConceptScore W2992040930C154945302 @default.