Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992044424> ?p ?o ?g. }
- W2992044424 endingPage "5378" @default.
- W2992044424 startingPage "5378" @default.
- W2992044424 abstract "Tomographic synthetic aperture radar (TomoSAR) produces 3-D point clouds with unavoidable noise or false targets that seriously deteriorate the quality of 3-D images and the building reconstruction over urban areas. In this paper, a Hough transform was adopted to detect the outline of a building; however, on one hand, the obtained outline of a building with Hough transform is broken, and on the other hand, some of these broken lines belong to the same segment of a building outline, but the parameters of these lines are slightly different. These problems will lead to that segment of a building outline being represented by multiple different parameters in the Hough transform. Therefore, an unsupervised clustering method was employed for clustering these line parameters. The lines gathered in the same cluster were considered to correspond to a same segment of a building outline. In this way, different line parameters corresponding to a segment of a building outline were integrated into one and then the continuous outline of the building in cloud points was obtained. Steps of the proposed data processing method were as follows. First, the Hough transform was made use of to detect the lines on the tomography plane in TomoSAR point clouds. These detected lines lay on the outline of the building, but they were broken due to the density variation of point clouds. Second, the lines detected using the Hough transform were grouped as a date set for training the building outline. Unsupervised clustering was utilized to classify the lines in several clusters. The cluster number was automatically determined via the unsupervised clustering algorithm, which meant the number of straight segments of the building edge was obtained. The lines in each cluster were considered to belong to the same straight segment of the building outline. Then, within each cluster, which represents a part or a segment of the building edge, a repaired straight line was constructed. Third, between each two clusters or each two segments of the building outline, the joint point was estimated by extending the two segments. Therefore, the building outline was obtained as completely as possible. Finally, taking the estimated building outline as the clustering center, supervised learning algorithm was used to classify the building cloud point and the noise (or false targets), then the building cloud point was refined. Then, our refined and unrefined data were fed into the neural network for building the 3-D construction. The comparison results show the correctness and the effectiveness of our improved method." @default.
- W2992044424 created "2019-12-13" @default.
- W2992044424 creator A5047202365 @default.
- W2992044424 creator A5047851681 @default.
- W2992044424 creator A5072414657 @default.
- W2992044424 creator A5074786209 @default.
- W2992044424 date "2019-12-05" @default.
- W2992044424 modified "2023-09-30" @default.
- W2992044424 title "Hough Transform and Clustering for a 3-D Building Reconstruction with Tomographic SAR Point Clouds" @default.
- W2992044424 cites W1974777989 @default.
- W2992044424 cites W1999826569 @default.
- W2992044424 cites W2030571511 @default.
- W2992044424 cites W2047254338 @default.
- W2992044424 cites W2052165367 @default.
- W2992044424 cites W2060645596 @default.
- W2992044424 cites W2062007696 @default.
- W2992044424 cites W2063826668 @default.
- W2992044424 cites W2064023564 @default.
- W2992044424 cites W2127271355 @default.
- W2992044424 cites W2142212280 @default.
- W2992044424 cites W2145250341 @default.
- W2992044424 cites W2150272680 @default.
- W2992044424 cites W2156442420 @default.
- W2992044424 cites W2288642056 @default.
- W2992044424 cites W2314576357 @default.
- W2992044424 cites W2511854525 @default.
- W2992044424 cites W2551498230 @default.
- W2992044424 cites W2606439220 @default.
- W2992044424 cites W2613211097 @default.
- W2992044424 cites W2751419859 @default.
- W2992044424 cites W2784194381 @default.
- W2992044424 cites W2810029008 @default.
- W2992044424 cites W2889465479 @default.
- W2992044424 cites W2900587135 @default.
- W2992044424 cites W2923320558 @default.
- W2992044424 cites W2970676859 @default.
- W2992044424 cites W2981159971 @default.
- W2992044424 doi "https://doi.org/10.3390/s19245378" @default.
- W2992044424 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6960941" @default.
- W2992044424 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31817536" @default.
- W2992044424 hasPublicationYear "2019" @default.
- W2992044424 type Work @default.
- W2992044424 sameAs 2992044424 @default.
- W2992044424 citedByCount "8" @default.
- W2992044424 countsByYear W29920444242020 @default.
- W2992044424 countsByYear W29920444242021 @default.
- W2992044424 countsByYear W29920444242023 @default.
- W2992044424 crossrefType "journal-article" @default.
- W2992044424 hasAuthorship W2992044424A5047202365 @default.
- W2992044424 hasAuthorship W2992044424A5047851681 @default.
- W2992044424 hasAuthorship W2992044424A5072414657 @default.
- W2992044424 hasAuthorship W2992044424A5074786209 @default.
- W2992044424 hasBestOaLocation W29920444241 @default.
- W2992044424 hasConcept C115961682 @default.
- W2992044424 hasConcept C131979681 @default.
- W2992044424 hasConcept C153180895 @default.
- W2992044424 hasConcept C154945302 @default.
- W2992044424 hasConcept C182124507 @default.
- W2992044424 hasConcept C198352243 @default.
- W2992044424 hasConcept C200518788 @default.
- W2992044424 hasConcept C2524010 @default.
- W2992044424 hasConcept C28719098 @default.
- W2992044424 hasConcept C31972630 @default.
- W2992044424 hasConcept C33923547 @default.
- W2992044424 hasConcept C41008148 @default.
- W2992044424 hasConcept C73555534 @default.
- W2992044424 hasConceptScore W2992044424C115961682 @default.
- W2992044424 hasConceptScore W2992044424C131979681 @default.
- W2992044424 hasConceptScore W2992044424C153180895 @default.
- W2992044424 hasConceptScore W2992044424C154945302 @default.
- W2992044424 hasConceptScore W2992044424C182124507 @default.
- W2992044424 hasConceptScore W2992044424C198352243 @default.
- W2992044424 hasConceptScore W2992044424C200518788 @default.
- W2992044424 hasConceptScore W2992044424C2524010 @default.
- W2992044424 hasConceptScore W2992044424C28719098 @default.
- W2992044424 hasConceptScore W2992044424C31972630 @default.
- W2992044424 hasConceptScore W2992044424C33923547 @default.
- W2992044424 hasConceptScore W2992044424C41008148 @default.
- W2992044424 hasConceptScore W2992044424C73555534 @default.
- W2992044424 hasFunder F4320335595 @default.
- W2992044424 hasIssue "24" @default.
- W2992044424 hasLocation W29920444241 @default.
- W2992044424 hasLocation W29920444242 @default.
- W2992044424 hasLocation W29920444243 @default.
- W2992044424 hasLocation W29920444244 @default.
- W2992044424 hasOpenAccess W2992044424 @default.
- W2992044424 hasPrimaryLocation W29920444241 @default.
- W2992044424 hasRelatedWork W1487607052 @default.
- W2992044424 hasRelatedWork W1860540373 @default.
- W2992044424 hasRelatedWork W1992456351 @default.
- W2992044424 hasRelatedWork W2003466055 @default.
- W2992044424 hasRelatedWork W2055246358 @default.
- W2992044424 hasRelatedWork W2093858167 @default.
- W2992044424 hasRelatedWork W2155695558 @default.
- W2992044424 hasRelatedWork W2164848100 @default.
- W2992044424 hasRelatedWork W2348531913 @default.
- W2992044424 hasRelatedWork W2558200041 @default.
- W2992044424 hasVolume "19" @default.