Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992080304> ?p ?o ?g. }
- W2992080304 endingPage "34436" @default.
- W2992080304 startingPage "34412" @default.
- W2992080304 abstract "In recent years, there has been considerable interest in the development of zero-emissions, sustainable energy systems utilising the potential of hydrogen energy technologies. However, the improper long-term economic assessment of costs and consequences of such hydrogen-based renewable energy systems has hindered the transition to the so-called hydrogen economy in many cases. One of the main reasons for this is the inefficiency of the optimization techniques employed to estimate the whole-life costs of such systems. Owing to the highly nonlinear and non-convex nature of the life-cycle cost optimization problems of sustainable energy systems using hydrogen as an energy carrier, meta-heuristic optimization techniques must be utilised to solve them. To this end, using a specifically developed artificial intelligence-based micro-grid capacity planning method, this paper examines the performances of twenty meta-heuristics in solving the optimal design problems of three conceptualised hydrogen-based micro-grids, as test-case systems. Accordingly, the obtained numeric simulation results using MATLAB indicate that some of the newly introduced meta-heuristics can play a key role in facilitating the successful, cost-effective development and implementation of hydrogen supply chain models. Notably, the moth-flame optimization algorithm is found capable of reducing the life-cycle costs of micro-grids by up to 6.5% as compared to the dragonfly algorithm." @default.
- W2992080304 created "2019-12-13" @default.
- W2992080304 creator A5019767237 @default.
- W2992080304 date "2020-12-01" @default.
- W2992080304 modified "2023-10-17" @default.
- W2992080304 title "Economic viability assessment of sustainable hydrogen production, storage, and utilisation technologies integrated into on- and off-grid micro-grids: A performance comparison of different meta-heuristics" @default.
- W2992080304 cites W1541288193 @default.
- W2992080304 cites W1824690553 @default.
- W2992080304 cites W1829950752 @default.
- W2992080304 cites W1968895664 @default.
- W2992080304 cites W1976115074 @default.
- W2992080304 cites W1981585916 @default.
- W2992080304 cites W1984762043 @default.
- W2992080304 cites W1993845925 @default.
- W2992080304 cites W1994272857 @default.
- W2992080304 cites W1999343629 @default.
- W2992080304 cites W2001979953 @default.
- W2992080304 cites W2006590657 @default.
- W2992080304 cites W2018775196 @default.
- W2992080304 cites W2019288197 @default.
- W2992080304 cites W2023149979 @default.
- W2992080304 cites W2031183907 @default.
- W2992080304 cites W2042237552 @default.
- W2992080304 cites W2043285804 @default.
- W2992080304 cites W2048333487 @default.
- W2992080304 cites W2061438946 @default.
- W2992080304 cites W2069166653 @default.
- W2992080304 cites W2069582589 @default.
- W2992080304 cites W2084397041 @default.
- W2992080304 cites W2086262575 @default.
- W2992080304 cites W2098733484 @default.
- W2992080304 cites W2119772009 @default.
- W2992080304 cites W2122610583 @default.
- W2992080304 cites W2142109579 @default.
- W2992080304 cites W2145963793 @default.
- W2992080304 cites W2151554678 @default.
- W2992080304 cites W2160694855 @default.
- W2992080304 cites W2171971395 @default.
- W2992080304 cites W2232317135 @default.
- W2992080304 cites W2236135864 @default.
- W2992080304 cites W2281041351 @default.
- W2992080304 cites W2465078833 @default.
- W2992080304 cites W2505095132 @default.
- W2992080304 cites W2512026982 @default.
- W2992080304 cites W2522873811 @default.
- W2992080304 cites W2524605109 @default.
- W2992080304 cites W2555334091 @default.
- W2992080304 cites W2585392941 @default.
- W2992080304 cites W2605564072 @default.
- W2992080304 cites W2606103116 @default.
- W2992080304 cites W2618541121 @default.
- W2992080304 cites W2621289625 @default.
- W2992080304 cites W2727889123 @default.
- W2992080304 cites W2738900493 @default.
- W2992080304 cites W2740707823 @default.
- W2992080304 cites W2765733327 @default.
- W2992080304 cites W2768734243 @default.
- W2992080304 cites W2778794777 @default.
- W2992080304 cites W2783399237 @default.
- W2992080304 cites W2789882307 @default.
- W2992080304 cites W2791261817 @default.
- W2992080304 cites W2793764302 @default.
- W2992080304 cites W2793952560 @default.
- W2992080304 cites W2804879574 @default.
- W2992080304 cites W2810157995 @default.
- W2992080304 cites W2884513730 @default.
- W2992080304 cites W2887934746 @default.
- W2992080304 cites W2888425729 @default.
- W2992080304 cites W2888551505 @default.
- W2992080304 cites W2888791340 @default.
- W2992080304 cites W2897019498 @default.
- W2992080304 cites W2902479177 @default.
- W2992080304 cites W2904447978 @default.
- W2992080304 cites W2905309063 @default.
- W2992080304 cites W2915446925 @default.
- W2992080304 cites W2920998088 @default.
- W2992080304 cites W2941358919 @default.
- W2992080304 cites W2941891824 @default.
- W2992080304 cites W2943379711 @default.
- W2992080304 cites W2954412853 @default.
- W2992080304 cites W2965962712 @default.
- W2992080304 cites W2968695906 @default.
- W2992080304 cites W2969288715 @default.
- W2992080304 cites W3151840396 @default.
- W2992080304 cites W414544266 @default.
- W2992080304 cites W585520785 @default.
- W2992080304 cites W883434633 @default.
- W2992080304 doi "https://doi.org/10.1016/j.ijhydene.2019.11.079" @default.
- W2992080304 hasPublicationYear "2020" @default.
- W2992080304 type Work @default.
- W2992080304 sameAs 2992080304 @default.
- W2992080304 citedByCount "39" @default.
- W2992080304 countsByYear W29920803042020 @default.
- W2992080304 countsByYear W29920803042021 @default.
- W2992080304 countsByYear W29920803042022 @default.
- W2992080304 countsByYear W29920803042023 @default.
- W2992080304 crossrefType "journal-article" @default.
- W2992080304 hasAuthorship W2992080304A5019767237 @default.