Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992124668> ?p ?o ?g. }
- W2992124668 endingPage "177296" @default.
- W2992124668 startingPage "177284" @default.
- W2992124668 abstract "When mechanical products work in complex environments, it is imperative to build an optimal maintenance strategy, based on accurate positioning of fault locations and prediction of fault conditions. Based on digital twinning technology, this paper proposes a “super-network-warning features” fault prediction and maintenance method. According to the digital twin five-dimensional structure, a three-layer super-network model is constructed, providing a quantitative research for data among heterogeneous subjects in digital twinning. Early-warning-features in the physical layer, virtual layer and service layer are selected as input parameters of the fault prediction model to accurately predict the cause of the fault. Then, using the simulation and optimization functions of the virtual model in digital twinning, a real-time maintenance strategy is formulated for the causes of the fault. It supplements the missing link between fault prediction and maintenance. Taking an aero-engine bearing as an example, this method is compared with a traditional method. The results show that the model prediction error of this method is better than the traditional method." @default.
- W2992124668 created "2019-12-13" @default.
- W2992124668 creator A5050678943 @default.
- W2992124668 creator A5057443470 @default.
- W2992124668 creator A5070657390 @default.
- W2992124668 creator A5073910119 @default.
- W2992124668 creator A5077260423 @default.
- W2992124668 date "2019-01-01" @default.
- W2992124668 modified "2023-10-17" @default.
- W2992124668 title "Data Super-Network Fault Prediction Model and Maintenance Strategy for Mechanical Product Based on Digital Twin" @default.
- W2992124668 cites W1968268217 @default.
- W2992124668 cites W1992882297 @default.
- W2992124668 cites W2001393256 @default.
- W2992124668 cites W2026899723 @default.
- W2992124668 cites W2037598904 @default.
- W2992124668 cites W2079964750 @default.
- W2992124668 cites W2108366027 @default.
- W2992124668 cites W2267453118 @default.
- W2992124668 cites W2342231262 @default.
- W2992124668 cites W2518003110 @default.
- W2992124668 cites W2569075773 @default.
- W2992124668 cites W2581964379 @default.
- W2992124668 cites W2592420394 @default.
- W2992124668 cites W2597150627 @default.
- W2992124668 cites W2606320129 @default.
- W2992124668 cites W2625535272 @default.
- W2992124668 cites W2736552576 @default.
- W2992124668 cites W2737897717 @default.
- W2992124668 cites W2757110387 @default.
- W2992124668 cites W2783918566 @default.
- W2992124668 cites W2786100634 @default.
- W2992124668 cites W2794455003 @default.
- W2992124668 cites W2801598009 @default.
- W2992124668 cites W2804780212 @default.
- W2992124668 cites W2806878106 @default.
- W2992124668 cites W2884839231 @default.
- W2992124668 cites W2884882006 @default.
- W2992124668 cites W2888563655 @default.
- W2992124668 cites W2889220424 @default.
- W2992124668 cites W2889773352 @default.
- W2992124668 cites W2896262734 @default.
- W2992124668 cites W2956903776 @default.
- W2992124668 cites W88390532 @default.
- W2992124668 doi "https://doi.org/10.1109/access.2019.2957202" @default.
- W2992124668 hasPublicationYear "2019" @default.
- W2992124668 type Work @default.
- W2992124668 sameAs 2992124668 @default.
- W2992124668 citedByCount "37" @default.
- W2992124668 countsByYear W29921246682020 @default.
- W2992124668 countsByYear W29921246682021 @default.
- W2992124668 countsByYear W29921246682022 @default.
- W2992124668 countsByYear W29921246682023 @default.
- W2992124668 crossrefType "journal-article" @default.
- W2992124668 hasAuthorship W2992124668A5050678943 @default.
- W2992124668 hasAuthorship W2992124668A5057443470 @default.
- W2992124668 hasAuthorship W2992124668A5070657390 @default.
- W2992124668 hasAuthorship W2992124668A5073910119 @default.
- W2992124668 hasAuthorship W2992124668A5077260423 @default.
- W2992124668 hasBestOaLocation W29921246681 @default.
- W2992124668 hasConcept C127313418 @default.
- W2992124668 hasConcept C127413603 @default.
- W2992124668 hasConcept C165205528 @default.
- W2992124668 hasConcept C175551986 @default.
- W2992124668 hasConcept C200601418 @default.
- W2992124668 hasConcept C2524010 @default.
- W2992124668 hasConcept C33923547 @default.
- W2992124668 hasConcept C41008148 @default.
- W2992124668 hasConcept C67186912 @default.
- W2992124668 hasConcept C77088390 @default.
- W2992124668 hasConcept C90673727 @default.
- W2992124668 hasConceptScore W2992124668C127313418 @default.
- W2992124668 hasConceptScore W2992124668C127413603 @default.
- W2992124668 hasConceptScore W2992124668C165205528 @default.
- W2992124668 hasConceptScore W2992124668C175551986 @default.
- W2992124668 hasConceptScore W2992124668C200601418 @default.
- W2992124668 hasConceptScore W2992124668C2524010 @default.
- W2992124668 hasConceptScore W2992124668C33923547 @default.
- W2992124668 hasConceptScore W2992124668C41008148 @default.
- W2992124668 hasConceptScore W2992124668C67186912 @default.
- W2992124668 hasConceptScore W2992124668C77088390 @default.
- W2992124668 hasConceptScore W2992124668C90673727 @default.
- W2992124668 hasLocation W29921246681 @default.
- W2992124668 hasOpenAccess W2992124668 @default.
- W2992124668 hasPrimaryLocation W29921246681 @default.
- W2992124668 hasRelatedWork W1913351697 @default.
- W2992124668 hasRelatedWork W2118164580 @default.
- W2992124668 hasRelatedWork W2275080951 @default.
- W2992124668 hasRelatedWork W2357346852 @default.
- W2992124668 hasRelatedWork W2363137091 @default.
- W2992124668 hasRelatedWork W2388112003 @default.
- W2992124668 hasRelatedWork W2969999744 @default.
- W2992124668 hasRelatedWork W3011977337 @default.
- W2992124668 hasRelatedWork W3015522184 @default.
- W2992124668 hasRelatedWork W4205453645 @default.
- W2992124668 hasVolume "7" @default.
- W2992124668 isParatext "false" @default.
- W2992124668 isRetracted "false" @default.
- W2992124668 magId "2992124668" @default.