Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992137546> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2992137546 endingPage "32" @default.
- W2992137546 startingPage "23" @default.
- W2992137546 abstract "Cybersickness is a symptom of dizziness that occurs while experiencing Virtual Reality (VR) technology and it is presumed to occur mainly by crosstalk between the sensory and cognitive systems. However, since the sensory and cognitive systems cannot be measured objectively, it is difficult to measure cybersickness. Therefore, methodologies for measuring cybersickness have been studied in various ways. Traditional studies have collected answers to questionnaires or analyzed EEG data using machine learning algorithms. However, the system relying on the questionnaires lacks objectivity, and it is difficult to obtain highly accurate measurements with the machine learning algorithms. In this work, we apply Deep Neural Network (DNN) deep learning algorithm for objective cybersickness measurement from EEG data. We also propose a data preprocessing for learning and network structures allowing us to achieve high performance when learning EEG data with the deep learning algorithms. Our approach provides cybersickness measurement with an accuracy up to 98.88%. Besides, we analyze video characteristics where cybersickness occurs by examining the video segments causing cybersickness in the experiments. We discover that cybersickness happens even in unusually persistent changes in the darkness such as the light in a room keeps switching on and off." @default.
- W2992137546 created "2019-12-13" @default.
- W2992137546 creator A5002657872 @default.
- W2992137546 creator A5010660324 @default.
- W2992137546 creator A5036974023 @default.
- W2992137546 date "2019-03-01" @default.
- W2992137546 modified "2023-09-26" @default.
- W2992137546 title "Motion Sickness Measurement and Analysis in Virtual Reality using Deep Neural Networks Algorithm" @default.
- W2992137546 cites W1964684330 @default.
- W2992137546 cites W1980122010 @default.
- W2992137546 cites W1984144775 @default.
- W2992137546 cites W2031136906 @default.
- W2992137546 cites W2047321564 @default.
- W2992137546 cites W2056108528 @default.
- W2992137546 cites W2056925087 @default.
- W2992137546 cites W2099741732 @default.
- W2992137546 cites W2101845744 @default.
- W2992137546 cites W2105909330 @default.
- W2992137546 cites W2108384452 @default.
- W2992137546 cites W2109773980 @default.
- W2992137546 cites W2115562224 @default.
- W2992137546 cites W2132889650 @default.
- W2992137546 cites W2134050473 @default.
- W2992137546 cites W2148158693 @default.
- W2992137546 cites W2154952114 @default.
- W2992137546 cites W2170883741 @default.
- W2992137546 cites W2582344767 @default.
- W2992137546 cites W2604377428 @default.
- W2992137546 cites W2962951526 @default.
- W2992137546 cites W3105605673 @default.
- W2992137546 cites W4255885670 @default.
- W2992137546 cites W4300402905 @default.
- W2992137546 doi "https://doi.org/10.15701/kcgs.2019.25.1.23" @default.
- W2992137546 hasPublicationYear "2019" @default.
- W2992137546 type Work @default.
- W2992137546 sameAs 2992137546 @default.
- W2992137546 citedByCount "5" @default.
- W2992137546 countsByYear W29921375462020 @default.
- W2992137546 countsByYear W29921375462022 @default.
- W2992137546 countsByYear W29921375462023 @default.
- W2992137546 crossrefType "journal-article" @default.
- W2992137546 hasAuthorship W2992137546A5002657872 @default.
- W2992137546 hasAuthorship W2992137546A5010660324 @default.
- W2992137546 hasAuthorship W2992137546A5036974023 @default.
- W2992137546 hasBestOaLocation W29921375461 @default.
- W2992137546 hasConcept C108583219 @default.
- W2992137546 hasConcept C11413529 @default.
- W2992137546 hasConcept C119857082 @default.
- W2992137546 hasConcept C154945302 @default.
- W2992137546 hasConcept C194969405 @default.
- W2992137546 hasConcept C2776872670 @default.
- W2992137546 hasConcept C34736171 @default.
- W2992137546 hasConcept C41008148 @default.
- W2992137546 hasConcept C50644808 @default.
- W2992137546 hasConceptScore W2992137546C108583219 @default.
- W2992137546 hasConceptScore W2992137546C11413529 @default.
- W2992137546 hasConceptScore W2992137546C119857082 @default.
- W2992137546 hasConceptScore W2992137546C154945302 @default.
- W2992137546 hasConceptScore W2992137546C194969405 @default.
- W2992137546 hasConceptScore W2992137546C2776872670 @default.
- W2992137546 hasConceptScore W2992137546C34736171 @default.
- W2992137546 hasConceptScore W2992137546C41008148 @default.
- W2992137546 hasConceptScore W2992137546C50644808 @default.
- W2992137546 hasFunder F4320322347 @default.
- W2992137546 hasIssue "1" @default.
- W2992137546 hasLocation W29921375461 @default.
- W2992137546 hasOpenAccess W2992137546 @default.
- W2992137546 hasPrimaryLocation W29921375461 @default.
- W2992137546 hasRelatedWork W3014300295 @default.
- W2992137546 hasRelatedWork W3164822677 @default.
- W2992137546 hasRelatedWork W4223943233 @default.
- W2992137546 hasRelatedWork W4225161397 @default.
- W2992137546 hasRelatedWork W4250304930 @default.
- W2992137546 hasRelatedWork W4309045103 @default.
- W2992137546 hasRelatedWork W4312200629 @default.
- W2992137546 hasRelatedWork W4313289316 @default.
- W2992137546 hasRelatedWork W4360585206 @default.
- W2992137546 hasRelatedWork W4364306694 @default.
- W2992137546 hasVolume "25" @default.
- W2992137546 isParatext "false" @default.
- W2992137546 isRetracted "false" @default.
- W2992137546 magId "2992137546" @default.
- W2992137546 workType "article" @default.