Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992181570> ?p ?o ?g. }
- W2992181570 endingPage "351" @default.
- W2992181570 startingPage "337" @default.
- W2992181570 abstract "Abstract Long time series (e.g. 30 years) urban land observations from remote sensing images are important for urban growth modeling as well as for the goal of sustainable urban development. However, updates to regional and even global maps are infrequent due to the cost and difficulty of collecting representative training data and the requirement for high-performance computation in processing large amounts of images. In this study, a semi-automatic large-scale and long time series (LSLTS) urban land mapping framework is demonstrated by integrating the crowdsourced OpenStreetMap (OSM) data with free Landsat images (~13,218 scenes) to generate annual urban land maps in the 317,000 km2 middle Yangtze River basin (MYRB) from 1987 to 2017 facilitated by Google Earth Engine (GEE). Random training samples for latest year were generated based on the updated OSM land use data after a manual topological conflict processing and uploaded to GEE for automatic image classification. For each historical year, training samples were obtained with a proposed transferring schema by which only the unchanged were selected through a change detection analysis. The annual spectral indices and texture feature maps acquired from the surface reflectance dataset were also added to the original bands. Finally, the classified maps were downloaded from GEE and a spatial-temporal consistency checking was further performed. Based on independent samples, the overall accuracies and kappa coefficients of all years ranged from 98% to 99% and 0.65 to 0.85, respectively. Our product when compared with current 30 m land-cover products showed similar accuracies but more spatial details. The characteristics of pattern, traces, and hotspots of urban expansion were further explored. This study provides a more convenient procedure for LSLTS urban land mapping especially for areas where large-scale field sample-collection is difficult and little historical crowdsourced datasets are available. The resultant dataset is expected to provide consistent details about the spatial distribution of urban land in MYRB. We highlight the potential use of this proposed framework to be applied and validated to other parts of the world to help better understand and quantify various aspects of urban-related problems." @default.
- W2992181570 created "2019-12-13" @default.
- W2992181570 creator A5006349365 @default.
- W2992181570 creator A5025501058 @default.
- W2992181570 creator A5084901503 @default.
- W2992181570 creator A5088176505 @default.
- W2992181570 date "2020-01-01" @default.
- W2992181570 modified "2023-10-16" @default.
- W2992181570 title "Annual large-scale urban land mapping based on Landsat time series in Google Earth Engine and OpenStreetMap data: A case study in the middle Yangtze River basin" @default.
- W2992181570 cites W1964672965 @default.
- W2992181570 cites W1964839977 @default.
- W2992181570 cites W1968378717 @default.
- W2992181570 cites W1977846848 @default.
- W2992181570 cites W1981213426 @default.
- W2992181570 cites W1983564473 @default.
- W2992181570 cites W1988032609 @default.
- W2992181570 cites W1990269578 @default.
- W2992181570 cites W2003425021 @default.
- W2992181570 cites W2004056710 @default.
- W2992181570 cites W2005828912 @default.
- W2992181570 cites W2006929658 @default.
- W2992181570 cites W2023970490 @default.
- W2992181570 cites W2028919462 @default.
- W2992181570 cites W2029987871 @default.
- W2992181570 cites W2031841848 @default.
- W2992181570 cites W2033822369 @default.
- W2992181570 cites W2035563469 @default.
- W2992181570 cites W2042692910 @default.
- W2992181570 cites W2044609898 @default.
- W2992181570 cites W2060335617 @default.
- W2992181570 cites W2063623478 @default.
- W2992181570 cites W2069820899 @default.
- W2992181570 cites W2101678239 @default.
- W2992181570 cites W2118898434 @default.
- W2992181570 cites W2121601221 @default.
- W2992181570 cites W2128117981 @default.
- W2992181570 cites W2131586477 @default.
- W2992181570 cites W2139709933 @default.
- W2992181570 cites W2140889880 @default.
- W2992181570 cites W2145023731 @default.
- W2992181570 cites W2147406638 @default.
- W2992181570 cites W2147462896 @default.
- W2992181570 cites W2148143831 @default.
- W2992181570 cites W2167208453 @default.
- W2992181570 cites W2218782803 @default.
- W2992181570 cites W2232344483 @default.
- W2992181570 cites W2238226741 @default.
- W2992181570 cites W2290326488 @default.
- W2992181570 cites W2307094448 @default.
- W2992181570 cites W2514037362 @default.
- W2992181570 cites W2518016751 @default.
- W2992181570 cites W2546661180 @default.
- W2992181570 cites W2548582196 @default.
- W2992181570 cites W2562299235 @default.
- W2992181570 cites W2591129009 @default.
- W2992181570 cites W2592532736 @default.
- W2992181570 cites W2592712793 @default.
- W2992181570 cites W2594803750 @default.
- W2992181570 cites W2596128158 @default.
- W2992181570 cites W2609578799 @default.
- W2992181570 cites W2625380067 @default.
- W2992181570 cites W2725897987 @default.
- W2992181570 cites W2745627344 @default.
- W2992181570 cites W2752696298 @default.
- W2992181570 cites W2754093725 @default.
- W2992181570 cites W2754274618 @default.
- W2992181570 cites W2754990761 @default.
- W2992181570 cites W2765285687 @default.
- W2992181570 cites W2774175635 @default.
- W2992181570 cites W2777810787 @default.
- W2992181570 cites W2783065878 @default.
- W2992181570 cites W2787335068 @default.
- W2992181570 cites W2793029461 @default.
- W2992181570 cites W2793327769 @default.
- W2992181570 cites W2806769981 @default.
- W2992181570 cites W2953011380 @default.
- W2992181570 cites W639537632 @default.
- W2992181570 doi "https://doi.org/10.1016/j.isprsjprs.2019.11.021" @default.
- W2992181570 hasPublicationYear "2020" @default.
- W2992181570 type Work @default.
- W2992181570 sameAs 2992181570 @default.
- W2992181570 citedByCount "62" @default.
- W2992181570 countsByYear W29921815702020 @default.
- W2992181570 countsByYear W29921815702021 @default.
- W2992181570 countsByYear W29921815702022 @default.
- W2992181570 countsByYear W29921815702023 @default.
- W2992181570 crossrefType "journal-article" @default.
- W2992181570 hasAuthorship W2992181570A5006349365 @default.
- W2992181570 hasAuthorship W2992181570A5025501058 @default.
- W2992181570 hasAuthorship W2992181570A5084901503 @default.
- W2992181570 hasAuthorship W2992181570A5088176505 @default.
- W2992181570 hasConcept C100970517 @default.
- W2992181570 hasConcept C109007969 @default.
- W2992181570 hasConcept C114793014 @default.
- W2992181570 hasConcept C119857082 @default.
- W2992181570 hasConcept C126645576 @default.
- W2992181570 hasConcept C127313418 @default.
- W2992181570 hasConcept C127413603 @default.