Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992198908> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2992198908 abstract "Many alternatives to traditional Multi-Objective Optimization Algorithms are emerging due to the increasing number of Multi-Objective Problems with a high degree of complexity, such as Many-Objective Problems. Among these alternatives, the methods known as surrogate stand out. These methods seek to construct new models for the objective functions based on the data obtained previously from the actual objective functions. The input of these models are a set of vectors in decision variable space and the output are the values of the objective functions. In this work, the Decision Variable Learning (DVL) algorithm is proposed, which presents an inverse idea to traditional surrogates. In the DVL, machine learning models will be used to learn the behavior of the decision variables in Many-Objective Optimization Problems. In this context, we have enough information to learn from the objective vectors, to predict near optimal solution in decision variable space. DVL algorithm will be evaluated using benchmark problems and its results will be compared with the NSGA-III algorithm." @default.
- W2992198908 created "2019-12-13" @default.
- W2992198908 creator A5021057873 @default.
- W2992198908 creator A5059006601 @default.
- W2992198908 creator A5064371560 @default.
- W2992198908 date "2019-10-01" @default.
- W2992198908 modified "2023-10-14" @default.
- W2992198908 title "Decision Variable Learning" @default.
- W2992198908 cites W152282416 @default.
- W2992198908 cites W2022485595 @default.
- W2992198908 cites W2102365077 @default.
- W2992198908 cites W2126273906 @default.
- W2992198908 cites W2482557998 @default.
- W2992198908 cites W2801550761 @default.
- W2992198908 cites W39808511 @default.
- W2992198908 doi "https://doi.org/10.1109/bracis.2019.00093" @default.
- W2992198908 hasPublicationYear "2019" @default.
- W2992198908 type Work @default.
- W2992198908 sameAs 2992198908 @default.
- W2992198908 citedByCount "1" @default.
- W2992198908 countsByYear W29921989082023 @default.
- W2992198908 crossrefType "proceedings-article" @default.
- W2992198908 hasAuthorship W2992198908A5021057873 @default.
- W2992198908 hasAuthorship W2992198908A5059006601 @default.
- W2992198908 hasAuthorship W2992198908A5064371560 @default.
- W2992198908 hasConcept C11413529 @default.
- W2992198908 hasConcept C119857082 @default.
- W2992198908 hasConcept C126255220 @default.
- W2992198908 hasConcept C13280743 @default.
- W2992198908 hasConcept C134306372 @default.
- W2992198908 hasConcept C137836250 @default.
- W2992198908 hasConcept C151730666 @default.
- W2992198908 hasConcept C154945302 @default.
- W2992198908 hasConcept C177264268 @default.
- W2992198908 hasConcept C182365436 @default.
- W2992198908 hasConcept C185798385 @default.
- W2992198908 hasConcept C199360897 @default.
- W2992198908 hasConcept C205649164 @default.
- W2992198908 hasConcept C2779343474 @default.
- W2992198908 hasConcept C33923547 @default.
- W2992198908 hasConcept C41008148 @default.
- W2992198908 hasConcept C86803240 @default.
- W2992198908 hasConceptScore W2992198908C11413529 @default.
- W2992198908 hasConceptScore W2992198908C119857082 @default.
- W2992198908 hasConceptScore W2992198908C126255220 @default.
- W2992198908 hasConceptScore W2992198908C13280743 @default.
- W2992198908 hasConceptScore W2992198908C134306372 @default.
- W2992198908 hasConceptScore W2992198908C137836250 @default.
- W2992198908 hasConceptScore W2992198908C151730666 @default.
- W2992198908 hasConceptScore W2992198908C154945302 @default.
- W2992198908 hasConceptScore W2992198908C177264268 @default.
- W2992198908 hasConceptScore W2992198908C182365436 @default.
- W2992198908 hasConceptScore W2992198908C185798385 @default.
- W2992198908 hasConceptScore W2992198908C199360897 @default.
- W2992198908 hasConceptScore W2992198908C205649164 @default.
- W2992198908 hasConceptScore W2992198908C2779343474 @default.
- W2992198908 hasConceptScore W2992198908C33923547 @default.
- W2992198908 hasConceptScore W2992198908C41008148 @default.
- W2992198908 hasConceptScore W2992198908C86803240 @default.
- W2992198908 hasLocation W29921989081 @default.
- W2992198908 hasOpenAccess W2992198908 @default.
- W2992198908 hasPrimaryLocation W29921989081 @default.
- W2992198908 hasRelatedWork W2039201796 @default.
- W2992198908 hasRelatedWork W2089095906 @default.
- W2992198908 hasRelatedWork W2136258730 @default.
- W2992198908 hasRelatedWork W2187613024 @default.
- W2992198908 hasRelatedWork W2514037459 @default.
- W2992198908 hasRelatedWork W2733595416 @default.
- W2992198908 hasRelatedWork W2895841339 @default.
- W2992198908 hasRelatedWork W3004853108 @default.
- W2992198908 hasRelatedWork W3174049743 @default.
- W2992198908 hasRelatedWork W3206863852 @default.
- W2992198908 isParatext "false" @default.
- W2992198908 isRetracted "false" @default.
- W2992198908 magId "2992198908" @default.
- W2992198908 workType "article" @default.