Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992244268> ?p ?o ?g. }
- W2992244268 endingPage "101322" @default.
- W2992244268 startingPage "101322" @default.
- W2992244268 abstract "Despite profound knowledge of the incidence of oral cancers and a large body of research beyond it, it continues to beat diagnosis and treatment management. Post physical observation by clinicians, a biopsy is a gold standard for accurate detection of any abnormalities. Towards the application of artificial intelligence as an aid to diagnosis, automated cell nuclei segmentation is the most essential step for the recognition of the cancer cells. In this study, we have extracted the shape, texture and color features from the histopathological images collected indigenously from regional hospitals. A dataset of 42 whole slide slices was used to automatically segment and generate a cell level dataset of 720 nuclei. Next, different classifiers were applied for classification purposes. 99.4 % accuracy using Decision Tree Classifier, 100 % accuracy using both SVM and Logistic regression and 100 % accuracy using SVM, Logistic regression and Linear Discriminant were acquired for shape, textural and color features respectively. The in-depth analysis showed SVM and Linear Discriminant classifier gave the best result for texture and color features respectively. The achieved result can be effectively converted to software as an assistant diagnostic tool." @default.
- W2992244268 created "2019-12-13" @default.
- W2992244268 creator A5022247968 @default.
- W2992244268 creator A5026660380 @default.
- W2992244268 creator A5061745691 @default.
- W2992244268 creator A5082725554 @default.
- W2992244268 date "2020-04-01" @default.
- W2992244268 modified "2023-10-12" @default.
- W2992244268 title "Automated oral squamous cell carcinoma identification using shape, texture and color features of whole image strips" @default.
- W2992244268 cites W1003639975 @default.
- W2992244268 cites W1582640985 @default.
- W2992244268 cites W1618587350 @default.
- W2992244268 cites W1887296478 @default.
- W2992244268 cites W1938743710 @default.
- W2992244268 cites W1970120446 @default.
- W2992244268 cites W1973683935 @default.
- W2992244268 cites W1979620603 @default.
- W2992244268 cites W1983346554 @default.
- W2992244268 cites W1988189270 @default.
- W2992244268 cites W1988445395 @default.
- W2992244268 cites W1992570073 @default.
- W2992244268 cites W2014287385 @default.
- W2992244268 cites W2014653882 @default.
- W2992244268 cites W2015346646 @default.
- W2992244268 cites W2029762417 @default.
- W2992244268 cites W2039051707 @default.
- W2992244268 cites W2043034051 @default.
- W2992244268 cites W2044465660 @default.
- W2992244268 cites W2062031327 @default.
- W2992244268 cites W2062600280 @default.
- W2992244268 cites W2063117062 @default.
- W2992244268 cites W2064320380 @default.
- W2992244268 cites W2064575351 @default.
- W2992244268 cites W2068832093 @default.
- W2992244268 cites W2069330528 @default.
- W2992244268 cites W2070173926 @default.
- W2992244268 cites W2082878617 @default.
- W2992244268 cites W2094562601 @default.
- W2992244268 cites W2113530039 @default.
- W2992244268 cites W2122111042 @default.
- W2992244268 cites W2133458583 @default.
- W2992244268 cites W2139212933 @default.
- W2992244268 cites W2144854846 @default.
- W2992244268 cites W2156065311 @default.
- W2992244268 cites W2162548780 @default.
- W2992244268 cites W2166581609 @default.
- W2992244268 cites W2170505850 @default.
- W2992244268 cites W2298702734 @default.
- W2992244268 cites W2397325893 @default.
- W2992244268 cites W2512138407 @default.
- W2992244268 cites W2521736072 @default.
- W2992244268 cites W2682360066 @default.
- W2992244268 cites W2724566091 @default.
- W2992244268 cites W2741253295 @default.
- W2992244268 cites W2763907499 @default.
- W2992244268 cites W2767748149 @default.
- W2992244268 cites W2773816688 @default.
- W2992244268 cites W2891064798 @default.
- W2992244268 cites W2907632336 @default.
- W2992244268 cites W2735041324 @default.
- W2992244268 doi "https://doi.org/10.1016/j.tice.2019.101322" @default.
- W2992244268 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32223950" @default.
- W2992244268 hasPublicationYear "2020" @default.
- W2992244268 type Work @default.
- W2992244268 sameAs 2992244268 @default.
- W2992244268 citedByCount "38" @default.
- W2992244268 countsByYear W29922442682020 @default.
- W2992244268 countsByYear W29922442682021 @default.
- W2992244268 countsByYear W29922442682022 @default.
- W2992244268 countsByYear W29922442682023 @default.
- W2992244268 crossrefType "journal-article" @default.
- W2992244268 hasAuthorship W2992244268A5022247968 @default.
- W2992244268 hasAuthorship W2992244268A5026660380 @default.
- W2992244268 hasAuthorship W2992244268A5061745691 @default.
- W2992244268 hasAuthorship W2992244268A5082725554 @default.
- W2992244268 hasConcept C119857082 @default.
- W2992244268 hasConcept C12267149 @default.
- W2992244268 hasConcept C151956035 @default.
- W2992244268 hasConcept C153180895 @default.
- W2992244268 hasConcept C154945302 @default.
- W2992244268 hasConcept C31972630 @default.
- W2992244268 hasConcept C41008148 @default.
- W2992244268 hasConcept C69738355 @default.
- W2992244268 hasConcept C84525736 @default.
- W2992244268 hasConcept C89600930 @default.
- W2992244268 hasConcept C95623464 @default.
- W2992244268 hasConceptScore W2992244268C119857082 @default.
- W2992244268 hasConceptScore W2992244268C12267149 @default.
- W2992244268 hasConceptScore W2992244268C151956035 @default.
- W2992244268 hasConceptScore W2992244268C153180895 @default.
- W2992244268 hasConceptScore W2992244268C154945302 @default.
- W2992244268 hasConceptScore W2992244268C31972630 @default.
- W2992244268 hasConceptScore W2992244268C41008148 @default.
- W2992244268 hasConceptScore W2992244268C69738355 @default.
- W2992244268 hasConceptScore W2992244268C84525736 @default.
- W2992244268 hasConceptScore W2992244268C89600930 @default.
- W2992244268 hasConceptScore W2992244268C95623464 @default.
- W2992244268 hasFunder F4320326716 @default.