Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992318529> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2992318529 abstract "While robotics has made tremendous progress over the last few decades, most success stories are still limited to carefully engineered and precisely modeled environments. Getting these robots to work in the complex and diverse world that we live in has proven to be a difficult challenge. Interestingly, one of the most significant successes in the last decade of AI has been the use of Machine Learning (ML) to generalize about and robustly handle diverse situations. From detecting objects in cluttered visual scenes to translating sentences between languages, ML has become an integral part of modern technology. So why don’twe just apply current learning algorithms to robots? Arguably, one of the biggest reason is the lack of large-scale data. A key ingredient that sparked progress in Computer Vision and Natural Language Processing was internet-scale data: 1-10 million labelled images for computer vision; 100 million word-pairs for language translation. Unfortunately, this scale of data is not available for robots. Hence, effectively integrating learning to robots requiresus to rethink our use of robotic data. In this thesis we draw inspiration from other data driven fields of AI (Computer Vision, Natural Language Processing, etc.) to develop data-centric robot learning techniques. However, unlike the aforementioned fields, robotics involves interactions with real hardware systems, which presents three unique challenges for large-scale learning. The first challengeis the physical nature of robotics where every piece of data needs to be executed on a real system. To scalably collect large amounts of data with minimal human supervision, wepresent ‘self-supervised’ robot learning techniques where the robot both collects and labels real-world data. From manipulating unseen objects in new homes to avoiding previously unseen obstacles while flying, we demonstrate that large-scale, self-supervised data, when combined with off-the-shelf ML tools, can produce generalizable robotic skills. The second challenge is that real robots are slow, which limits the amount of data we can collect even with ‘self-supervised’ techniques. This limitation necessitates the development of algorithms that can efficiently utilize available robot data. We do this by instilling notionsof robustness via adversaries and sharing representations across multiple tasks. Finally, in several applications, robotic data may not be easy or practical to collect. Insuch scenarios, we can turn to data from simulated models of the real world. Towards this, we present algorithms to learn generalizable skills in a simulator that can transfer to the real world." @default.
- W2992318529 created "2019-12-13" @default.
- W2992318529 creator A5056646668 @default.
- W2992318529 date "2019-10-15" @default.
- W2992318529 modified "2023-09-23" @default.
- W2992318529 title "Data Centric Robot Learning" @default.
- W2992318529 doi "https://doi.org/10.1184/r1/9823772.v1" @default.
- W2992318529 hasPublicationYear "2019" @default.
- W2992318529 type Work @default.
- W2992318529 sameAs 2992318529 @default.
- W2992318529 citedByCount "1" @default.
- W2992318529 countsByYear W29923185292020 @default.
- W2992318529 crossrefType "dissertation" @default.
- W2992318529 hasAuthorship W2992318529A5056646668 @default.
- W2992318529 hasConcept C107457646 @default.
- W2992318529 hasConcept C119857082 @default.
- W2992318529 hasConcept C154945302 @default.
- W2992318529 hasConcept C205649164 @default.
- W2992318529 hasConcept C2778755073 @default.
- W2992318529 hasConcept C34413123 @default.
- W2992318529 hasConcept C41008148 @default.
- W2992318529 hasConcept C58640448 @default.
- W2992318529 hasConcept C90509273 @default.
- W2992318529 hasConceptScore W2992318529C107457646 @default.
- W2992318529 hasConceptScore W2992318529C119857082 @default.
- W2992318529 hasConceptScore W2992318529C154945302 @default.
- W2992318529 hasConceptScore W2992318529C205649164 @default.
- W2992318529 hasConceptScore W2992318529C2778755073 @default.
- W2992318529 hasConceptScore W2992318529C34413123 @default.
- W2992318529 hasConceptScore W2992318529C41008148 @default.
- W2992318529 hasConceptScore W2992318529C58640448 @default.
- W2992318529 hasConceptScore W2992318529C90509273 @default.
- W2992318529 hasLocation W29923185291 @default.
- W2992318529 hasOpenAccess W2992318529 @default.
- W2992318529 hasPrimaryLocation W29923185291 @default.
- W2992318529 hasRelatedWork W2063471043 @default.
- W2992318529 hasRelatedWork W2117479397 @default.
- W2992318529 hasRelatedWork W2185716385 @default.
- W2992318529 hasRelatedWork W2234518903 @default.
- W2992318529 hasRelatedWork W2591592925 @default.
- W2992318529 hasRelatedWork W2895558617 @default.
- W2992318529 hasRelatedWork W2910384675 @default.
- W2992318529 hasRelatedWork W2922686002 @default.
- W2992318529 hasRelatedWork W2955035422 @default.
- W2992318529 hasRelatedWork W2981626359 @default.
- W2992318529 hasRelatedWork W3020712699 @default.
- W2992318529 hasRelatedWork W3035014454 @default.
- W2992318529 hasRelatedWork W3049698280 @default.
- W2992318529 hasRelatedWork W3111672163 @default.
- W2992318529 hasRelatedWork W3125151277 @default.
- W2992318529 hasRelatedWork W3154362494 @default.
- W2992318529 hasRelatedWork W3192037738 @default.
- W2992318529 hasRelatedWork W3206651104 @default.
- W2992318529 hasRelatedWork W78862489 @default.
- W2992318529 hasRelatedWork W7978787 @default.
- W2992318529 isParatext "false" @default.
- W2992318529 isRetracted "false" @default.
- W2992318529 magId "2992318529" @default.
- W2992318529 workType "dissertation" @default.