Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992435888> ?p ?o ?g. }
- W2992435888 endingPage "5333" @default.
- W2992435888 startingPage "5333" @default.
- W2992435888 abstract "The electronic nose (e-nose) system is a newly developing detection technology for its advantages of non-invasiveness, simple operation, and low cost. However, lung cancer screening through e-nose requires effective pattern recognition frameworks. Existing frameworks rely heavily on hand-crafted features and have relatively low diagnostic sensitivity. To handle these problems, gated recurrent unit based autoencoder (GRU-AE) is adopted to automatically extract features from temporal and high-dimensional e-nose data. Moreover, we propose a novel margin and sensitivity based ordering ensemble pruning (MSEP) model for effective classification. The proposed heuristic model aims to reduce missed diagnosis rate of lung cancer patients while maintaining a high rate of overall identification. In the experiments, five state-of-the-art classification models and two popular dimensionality reduction methods were involved for comparison to demonstrate the validity of the proposed GRU-AE-MSEP framework, through 214 collected breath samples measured by e-nose. Experimental results indicated that the proposed intelligent framework achieved high sensitivity of 94.22%, accuracy of 93.55%, and specificity of 92.80%, thereby providing a new practical means for wide disease screening by e-nose in medical scenarios." @default.
- W2992435888 created "2019-12-13" @default.
- W2992435888 creator A5012672747 @default.
- W2992435888 creator A5038352275 @default.
- W2992435888 creator A5064518250 @default.
- W2992435888 creator A5065514848 @default.
- W2992435888 creator A5077622519 @default.
- W2992435888 date "2019-12-03" @default.
- W2992435888 modified "2023-10-16" @default.
- W2992435888 title "A Novel Framework with High Diagnostic Sensitivity for Lung Cancer Detection by Electronic Nose" @default.
- W2992435888 cites W1940373023 @default.
- W2992435888 cites W1974207438 @default.
- W2992435888 cites W1975846642 @default.
- W2992435888 cites W1984160940 @default.
- W2992435888 cites W1985297983 @default.
- W2992435888 cites W1988790447 @default.
- W2992435888 cites W1990405323 @default.
- W2992435888 cites W1992747532 @default.
- W2992435888 cites W1994556338 @default.
- W2992435888 cites W1995158502 @default.
- W2992435888 cites W1996202672 @default.
- W2992435888 cites W1997768806 @default.
- W2992435888 cites W1997947642 @default.
- W2992435888 cites W2003176591 @default.
- W2992435888 cites W2007698831 @default.
- W2992435888 cites W2014320166 @default.
- W2992435888 cites W2022851810 @default.
- W2992435888 cites W2023717753 @default.
- W2992435888 cites W2029526848 @default.
- W2992435888 cites W2031300874 @default.
- W2992435888 cites W2047410068 @default.
- W2992435888 cites W2061521613 @default.
- W2992435888 cites W2064675550 @default.
- W2992435888 cites W2074325744 @default.
- W2992435888 cites W2078357450 @default.
- W2992435888 cites W2082406884 @default.
- W2992435888 cites W2100128988 @default.
- W2992435888 cites W2107610392 @default.
- W2992435888 cites W2108110937 @default.
- W2992435888 cites W2116349217 @default.
- W2992435888 cites W2124721964 @default.
- W2992435888 cites W2139399746 @default.
- W2992435888 cites W2151509918 @default.
- W2992435888 cites W2163117853 @default.
- W2992435888 cites W2228221433 @default.
- W2992435888 cites W2403737244 @default.
- W2992435888 cites W2486737114 @default.
- W2992435888 cites W2611814915 @default.
- W2992435888 cites W2612584592 @default.
- W2992435888 cites W2670426901 @default.
- W2992435888 cites W2729784024 @default.
- W2992435888 cites W2742823948 @default.
- W2992435888 cites W2763502639 @default.
- W2992435888 cites W2768161632 @default.
- W2992435888 cites W2786517672 @default.
- W2992435888 cites W2887828378 @default.
- W2992435888 cites W2888872982 @default.
- W2992435888 cites W2889646458 @default.
- W2992435888 cites W2891900416 @default.
- W2992435888 cites W2893850995 @default.
- W2992435888 cites W2894028456 @default.
- W2992435888 cites W2897393632 @default.
- W2992435888 cites W2907570412 @default.
- W2992435888 cites W2910501941 @default.
- W2992435888 cites W2917696006 @default.
- W2992435888 cites W2937511596 @default.
- W2992435888 cites W2942497026 @default.
- W2992435888 cites W2963106990 @default.
- W2992435888 cites W2968129649 @default.
- W2992435888 cites W2971928427 @default.
- W2992435888 cites W2980295193 @default.
- W2992435888 doi "https://doi.org/10.3390/s19235333" @default.
- W2992435888 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6928832" @default.
- W2992435888 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31817006" @default.
- W2992435888 hasPublicationYear "2019" @default.
- W2992435888 type Work @default.
- W2992435888 sameAs 2992435888 @default.
- W2992435888 citedByCount "14" @default.
- W2992435888 countsByYear W29924358882020 @default.
- W2992435888 countsByYear W29924358882021 @default.
- W2992435888 countsByYear W29924358882022 @default.
- W2992435888 countsByYear W29924358882023 @default.
- W2992435888 crossrefType "journal-article" @default.
- W2992435888 hasAuthorship W2992435888A5012672747 @default.
- W2992435888 hasAuthorship W2992435888A5038352275 @default.
- W2992435888 hasAuthorship W2992435888A5064518250 @default.
- W2992435888 hasAuthorship W2992435888A5065514848 @default.
- W2992435888 hasAuthorship W2992435888A5077622519 @default.
- W2992435888 hasBestOaLocation W29924358881 @default.
- W2992435888 hasConcept C101738243 @default.
- W2992435888 hasConcept C108010975 @default.
- W2992435888 hasConcept C108583219 @default.
- W2992435888 hasConcept C119857082 @default.
- W2992435888 hasConcept C124101348 @default.
- W2992435888 hasConcept C127413603 @default.
- W2992435888 hasConcept C141071460 @default.
- W2992435888 hasConcept C142724271 @default.
- W2992435888 hasConcept C153180895 @default.