Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992509895> ?p ?o ?g. }
- W2992509895 endingPage "15" @default.
- W2992509895 startingPage "8" @default.
- W2992509895 abstract "This article is motivated by a commitment to the ideas underlying discovery learning, namely the epistemological notion of grounded, meaningful, generative knowledge. It is also motivated by concern that these ideas have been implicitly misinterpreted in curriculum and instruction, ulti mately to the detriment of students. Accordingly, I discuss an alternative, empirically based, theoretical articulation of discovery pedagogy that addresses the criticisms it has faced. The research question framing this alternative approach is, What exactly about a mathematical concept should students discover via discovery learning? I will pursue this question by reflecting on two case stud ies of children who participated in activities of my own design. Empirical data from these and other studies have served me over the past decade as contexts for inquiry into the cognition and instruction of mathematical concepts, an inquiry that, in turn, keeps feeding back into further design and articulation of design principles. In this essay, I will use these data to offer an empirically grounded centrist answer to the question of what students should discover, at least with respect to a particular class of mathematical concepts (intensive quantities) as embodied in a particular type of design (perception-based learning). First, though, some fur ther clarification of terms is due. The rationale of my proposal hinges on a common dis tinction between and in mathematical learning activities. By process, I am referring to a general problem-solving sequence: (a) construing, parsing, and modeling a realistic situation along dimensions relevant to goal information; (b) determining targeted values within these dimensions (by enumeration and/or measurement); (c) manipulating these extracted values algorithmically with the aid of further mathematical instruments, tools, forms, and media, such as inscribing and developing an algebraic formula; and (d) reinterpreting obtained values or inferences in light of the source situation (e.g., Verschaffel, Greer & De Corte, 2000). By product, I refer primarily to any of the milestone mathematical displays created through engaging in the process, including inscriptions, such as diagrams, and multimodal utterance, such as speech or gesture. An exam ple of a would be the event space of a probability experiment, which is created through combinatorial analysis of a random generator—a novice can be guided to build this product, yet only an expert can infer from it an anticipated outcome distribution. I do no cas my articulations of the terms process and product as offering in-and-of-themselves any unique insight i t the nature of mathematical cognition. I am not referring to epistemological debates about arithmetical oper ations as pro esses or objects (e.g., Confrey & Costa, 1996; Sfard, 1991). Similarly, by process, I am not referring to s hematic mental activity with operational closure (Varela, Thompson & Rosch, 1991, p. 139) but to the cultural rote algorithmic practice that can be enacted piecemeal and imi tatively with littl to no grounding or clear goal-based orientation. By product, I am not referring to an interim state of self-adapted chemes resulting from situated enactment, but to external or externalized information, such as inscrip tional artifacts or vocalized or gestured expressions that come to exist in the world, in forms that Norman (1991) might call cogni ive rtifacts or what Hutchins (1995) might view as mean of instrumenting and distributing col lective cognitive activity. Finally, my objective is not so much to survey or evaluate the variety of pedagogical philosophies in dialogue with con structiv sm (see Cobb, 2005; Freudenthal, 1991; Norton, 2009; Radford, 2005). Nor will I comment on whether math ematical knowledg is formed as a cognitive schema, social practice, semiotic system, etc. Rather, I am exploring whether the exacting tenets of the more radical forms of constructivist mathematical pedagogy may be upheld, yet adapted, so as to include instructional situations in which the locus of reinven" @default.
- W2992509895 created "2019-12-13" @default.
- W2992509895 creator A5068585796 @default.
- W2992509895 date "2012-01-01" @default.
- W2992509895 modified "2023-09-28" @default.
- W2992509895 title "Discovery Reconceived: Product before Process." @default.
- W2992509895 cites W1489963381 @default.
- W2992509895 cites W1511774024 @default.
- W2992509895 cites W1527595087 @default.
- W2992509895 cites W1533380416 @default.
- W2992509895 cites W1543065506 @default.
- W2992509895 cites W186080570 @default.
- W2992509895 cites W1907047826 @default.
- W2992509895 cites W1971651248 @default.
- W2992509895 cites W1977262853 @default.
- W2992509895 cites W1978550631 @default.
- W2992509895 cites W1982535416 @default.
- W2992509895 cites W1999786027 @default.
- W2992509895 cites W2000359690 @default.
- W2992509895 cites W2048701323 @default.
- W2992509895 cites W2072267223 @default.
- W2992509895 cites W2085529605 @default.
- W2992509895 cites W2090868199 @default.
- W2992509895 cites W2129427128 @default.
- W2992509895 cites W2137150852 @default.
- W2992509895 cites W2217394052 @default.
- W2992509895 cites W2911537016 @default.
- W2992509895 cites W589631126 @default.
- W2992509895 cites W79546405 @default.
- W2992509895 cites W2741404420 @default.
- W2992509895 hasPublicationYear "2012" @default.
- W2992509895 type Work @default.
- W2992509895 sameAs 2992509895 @default.
- W2992509895 citedByCount "3" @default.
- W2992509895 countsByYear W29925098952016 @default.
- W2992509895 countsByYear W29925098952018 @default.
- W2992509895 crossrefType "journal-article" @default.
- W2992509895 hasAuthorship W2992509895A5068585796 @default.
- W2992509895 hasConcept C100609095 @default.
- W2992509895 hasConcept C111472728 @default.
- W2992509895 hasConcept C111919701 @default.
- W2992509895 hasConcept C127413603 @default.
- W2992509895 hasConcept C138885662 @default.
- W2992509895 hasConcept C145420912 @default.
- W2992509895 hasConcept C154945302 @default.
- W2992509895 hasConcept C15744967 @default.
- W2992509895 hasConcept C169087156 @default.
- W2992509895 hasConcept C188147891 @default.
- W2992509895 hasConcept C19417346 @default.
- W2992509895 hasConcept C26760741 @default.
- W2992509895 hasConcept C2777212361 @default.
- W2992509895 hasConcept C2779786715 @default.
- W2992509895 hasConcept C37228920 @default.
- W2992509895 hasConcept C39890363 @default.
- W2992509895 hasConcept C41008148 @default.
- W2992509895 hasConcept C47177190 @default.
- W2992509895 hasConcept C66938386 @default.
- W2992509895 hasConcept C98045186 @default.
- W2992509895 hasConceptScore W2992509895C100609095 @default.
- W2992509895 hasConceptScore W2992509895C111472728 @default.
- W2992509895 hasConceptScore W2992509895C111919701 @default.
- W2992509895 hasConceptScore W2992509895C127413603 @default.
- W2992509895 hasConceptScore W2992509895C138885662 @default.
- W2992509895 hasConceptScore W2992509895C145420912 @default.
- W2992509895 hasConceptScore W2992509895C154945302 @default.
- W2992509895 hasConceptScore W2992509895C15744967 @default.
- W2992509895 hasConceptScore W2992509895C169087156 @default.
- W2992509895 hasConceptScore W2992509895C188147891 @default.
- W2992509895 hasConceptScore W2992509895C19417346 @default.
- W2992509895 hasConceptScore W2992509895C26760741 @default.
- W2992509895 hasConceptScore W2992509895C2777212361 @default.
- W2992509895 hasConceptScore W2992509895C2779786715 @default.
- W2992509895 hasConceptScore W2992509895C37228920 @default.
- W2992509895 hasConceptScore W2992509895C39890363 @default.
- W2992509895 hasConceptScore W2992509895C41008148 @default.
- W2992509895 hasConceptScore W2992509895C47177190 @default.
- W2992509895 hasConceptScore W2992509895C66938386 @default.
- W2992509895 hasConceptScore W2992509895C98045186 @default.
- W2992509895 hasIssue "1" @default.
- W2992509895 hasLocation W29925098951 @default.
- W2992509895 hasOpenAccess W2992509895 @default.
- W2992509895 hasPrimaryLocation W29925098951 @default.
- W2992509895 hasRelatedWork W1533380416 @default.
- W2992509895 hasRelatedWork W1547553826 @default.
- W2992509895 hasRelatedWork W1591721817 @default.
- W2992509895 hasRelatedWork W1606328991 @default.
- W2992509895 hasRelatedWork W1698657956 @default.
- W2992509895 hasRelatedWork W1815090327 @default.
- W2992509895 hasRelatedWork W1965310226 @default.
- W2992509895 hasRelatedWork W1969031799 @default.
- W2992509895 hasRelatedWork W1970580174 @default.
- W2992509895 hasRelatedWork W1971658858 @default.
- W2992509895 hasRelatedWork W1977262853 @default.
- W2992509895 hasRelatedWork W2000359690 @default.
- W2992509895 hasRelatedWork W2060980331 @default.
- W2992509895 hasRelatedWork W2069235580 @default.
- W2992509895 hasRelatedWork W2083397049 @default.
- W2992509895 hasRelatedWork W2106713455 @default.