Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992543908> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2992543908 abstract "In real time, an observation series can depend on and be affected by many different observations. Therefore, to forecast more accurately, it is necessary to consider adding multi factors that have potential correlations in the model. This study proposes a new forecasting model based on two - factor high - order fuzzy time series (FTS) combined with particle swarm optimization (PSO) for forecasting the daily average temperature and forecasting car road accidents. Different from some previous models, in the proposed model, time - variant high-order fuzzy logical relationship groups are built to be used in the forecasting process. While, PSO is still used to find the optimal interval in the universe of discourse of each factor. Two data sets of weather temperatures and annual road traffic accidents with corresponding factors “Temperature”, “Cloud density” and “Killed”, “Mortally wounded”, respectively are selected to demonstrate the effectiveness of the proposed model and compare it with existing models. The experimental results show that the proposed model has better forecasting accuracy than previous forecasting models based on two-factor high-order FTS." @default.
- W2992543908 created "2019-12-13" @default.
- W2992543908 creator A5021883201 @default.
- W2992543908 creator A5071308048 @default.
- W2992543908 date "2019-12-01" @default.
- W2992543908 modified "2023-09-23" @default.
- W2992543908 title "Handling Forecasting Problems Based on Two-Factor High-Order Fuzzy Time Series and Particle Swarm Optimization" @default.
- W2992543908 cites W1971869067 @default.
- W2992543908 cites W1979464351 @default.
- W2992543908 cites W1988828407 @default.
- W2992543908 cites W1991662650 @default.
- W2992543908 cites W1995461802 @default.
- W2992543908 cites W2000507891 @default.
- W2992543908 cites W2004157188 @default.
- W2992543908 cites W2013550496 @default.
- W2992543908 cites W2016277841 @default.
- W2992543908 cites W2021447957 @default.
- W2992543908 cites W2022885136 @default.
- W2992543908 cites W2029980558 @default.
- W2992543908 cites W2030103549 @default.
- W2992543908 cites W2062882045 @default.
- W2992543908 cites W2069803859 @default.
- W2992543908 cites W2079965047 @default.
- W2992543908 cites W2103347496 @default.
- W2992543908 cites W2105672216 @default.
- W2992543908 cites W2116911268 @default.
- W2992543908 cites W2130519559 @default.
- W2992543908 cites W2131453387 @default.
- W2992543908 cites W2168577773 @default.
- W2992543908 cites W2557959610 @default.
- W2992543908 doi "https://doi.org/10.1007/978-3-030-37497-6_45" @default.
- W2992543908 hasPublicationYear "2019" @default.
- W2992543908 type Work @default.
- W2992543908 sameAs 2992543908 @default.
- W2992543908 citedByCount "0" @default.
- W2992543908 crossrefType "book-chapter" @default.
- W2992543908 hasAuthorship W2992543908A5021883201 @default.
- W2992543908 hasAuthorship W2992543908A5071308048 @default.
- W2992543908 hasConcept C111919701 @default.
- W2992543908 hasConcept C114614502 @default.
- W2992543908 hasConcept C119857082 @default.
- W2992543908 hasConcept C124101348 @default.
- W2992543908 hasConcept C126255220 @default.
- W2992543908 hasConcept C143724316 @default.
- W2992543908 hasConcept C151406439 @default.
- W2992543908 hasConcept C151730666 @default.
- W2992543908 hasConcept C154945302 @default.
- W2992543908 hasConcept C199360897 @default.
- W2992543908 hasConcept C2778067643 @default.
- W2992543908 hasConcept C2781039887 @default.
- W2992543908 hasConcept C33923547 @default.
- W2992543908 hasConcept C41008148 @default.
- W2992543908 hasConcept C58166 @default.
- W2992543908 hasConcept C85617194 @default.
- W2992543908 hasConcept C86803240 @default.
- W2992543908 hasConcept C98045186 @default.
- W2992543908 hasConceptScore W2992543908C111919701 @default.
- W2992543908 hasConceptScore W2992543908C114614502 @default.
- W2992543908 hasConceptScore W2992543908C119857082 @default.
- W2992543908 hasConceptScore W2992543908C124101348 @default.
- W2992543908 hasConceptScore W2992543908C126255220 @default.
- W2992543908 hasConceptScore W2992543908C143724316 @default.
- W2992543908 hasConceptScore W2992543908C151406439 @default.
- W2992543908 hasConceptScore W2992543908C151730666 @default.
- W2992543908 hasConceptScore W2992543908C154945302 @default.
- W2992543908 hasConceptScore W2992543908C199360897 @default.
- W2992543908 hasConceptScore W2992543908C2778067643 @default.
- W2992543908 hasConceptScore W2992543908C2781039887 @default.
- W2992543908 hasConceptScore W2992543908C33923547 @default.
- W2992543908 hasConceptScore W2992543908C41008148 @default.
- W2992543908 hasConceptScore W2992543908C58166 @default.
- W2992543908 hasConceptScore W2992543908C85617194 @default.
- W2992543908 hasConceptScore W2992543908C86803240 @default.
- W2992543908 hasConceptScore W2992543908C98045186 @default.
- W2992543908 hasLocation W29925439081 @default.
- W2992543908 hasOpenAccess W2992543908 @default.
- W2992543908 hasPrimaryLocation W29925439081 @default.
- W2992543908 hasRelatedWork W10666723 @default.
- W2992543908 hasRelatedWork W10852225 @default.
- W2992543908 hasRelatedWork W12084829 @default.
- W2992543908 hasRelatedWork W2089665 @default.
- W2992543908 hasRelatedWork W248911 @default.
- W2992543908 hasRelatedWork W4132953 @default.
- W2992543908 hasRelatedWork W5536689 @default.
- W2992543908 hasRelatedWork W8506750 @default.
- W2992543908 hasRelatedWork W8779344 @default.
- W2992543908 hasRelatedWork W9530112 @default.
- W2992543908 isParatext "false" @default.
- W2992543908 isRetracted "false" @default.
- W2992543908 magId "2992543908" @default.
- W2992543908 workType "book-chapter" @default.