Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992555314> ?p ?o ?g. }
- W2992555314 endingPage "103164" @default.
- W2992555314 startingPage "103164" @default.
- W2992555314 abstract "Energy efficiency and reliability needs are growing in many economic sectors, where predictive analytics are becoming essential tools for these key variables forecasting. When predicting these variables, in many occasions, the problem to simplify the prediction model format when dealing with similar systems, which are placed in different functional locations, is a very complex problem due to model unavoidable dependency on changing operating conditions (per time and location). So effort is placed in this paper to develop tools that can easily adapt prediction models’ structure to existing operating conditions, for a given time period and place where the asset is located. Furthermore, these tools may allow the model to be easily trained and tested for automated implementation within the plant’s remote surveillance system. To this end, Artificial Intelligence (AI) techniques, and in particular artificial neural network (ANN) models, have been selected in this paper as prediction models, since their structure can be adapted to improve predictions accuracy and they can also learn from dynamic changes in environmental conditions. To demonstrate the adaptability for prediction accuracy and self-learning capabilities of the model, we have implemented an ANN with a backpropagation algorithm as a continuous time simulation model, which is then implemented using Vensim simulation environment, to benefit of the outstanding software optimization features for fast training. Using this model we provide predictions of asset degradation and operational risk under existing real time internal and locational variables. We can also dynamically release preventive maintenance activities. This prediction model is exemplified in an industrial case for failures in cryogenic pumps of LNG tanks." @default.
- W2992555314 created "2019-12-13" @default.
- W2992555314 creator A5043697629 @default.
- W2992555314 creator A5047720214 @default.
- W2992555314 creator A5047987767 @default.
- W2992555314 date "2020-02-01" @default.
- W2992555314 modified "2023-10-01" @default.
- W2992555314 title "Integrating artificial intelligent techniques and continuous time simulation modelling. Practical predictive analytics for energy efficiency and failure detection" @default.
- W2992555314 cites W1474208048 @default.
- W2992555314 cites W1586335931 @default.
- W2992555314 cites W1964513585 @default.
- W2992555314 cites W1969108904 @default.
- W2992555314 cites W1974876127 @default.
- W2992555314 cites W2014478140 @default.
- W2992555314 cites W2028070629 @default.
- W2992555314 cites W2029141495 @default.
- W2992555314 cites W2037411704 @default.
- W2992555314 cites W2038713466 @default.
- W2992555314 cites W2107878631 @default.
- W2992555314 cites W2114013702 @default.
- W2992555314 cites W2122379760 @default.
- W2992555314 cites W2160856693 @default.
- W2992555314 cites W2259944928 @default.
- W2992555314 cites W2489461319 @default.
- W2992555314 cites W2755252449 @default.
- W2992555314 cites W2770757993 @default.
- W2992555314 cites W2810431965 @default.
- W2992555314 cites W2944813597 @default.
- W2992555314 cites W2946296475 @default.
- W2992555314 cites W3121488904 @default.
- W2992555314 cites W4243417134 @default.
- W2992555314 doi "https://doi.org/10.1016/j.compind.2019.103164" @default.
- W2992555314 hasPublicationYear "2020" @default.
- W2992555314 type Work @default.
- W2992555314 sameAs 2992555314 @default.
- W2992555314 citedByCount "6" @default.
- W2992555314 countsByYear W29925553142020 @default.
- W2992555314 countsByYear W29925553142021 @default.
- W2992555314 countsByYear W29925553142022 @default.
- W2992555314 crossrefType "journal-article" @default.
- W2992555314 hasAuthorship W2992555314A5043697629 @default.
- W2992555314 hasAuthorship W2992555314A5047720214 @default.
- W2992555314 hasAuthorship W2992555314A5047987767 @default.
- W2992555314 hasConcept C119857082 @default.
- W2992555314 hasConcept C121332964 @default.
- W2992555314 hasConcept C124101348 @default.
- W2992555314 hasConcept C154945302 @default.
- W2992555314 hasConcept C155032097 @default.
- W2992555314 hasConcept C163258240 @default.
- W2992555314 hasConcept C177606310 @default.
- W2992555314 hasConcept C18903297 @default.
- W2992555314 hasConcept C19768560 @default.
- W2992555314 hasConcept C199360897 @default.
- W2992555314 hasConcept C26517878 @default.
- W2992555314 hasConcept C2777904410 @default.
- W2992555314 hasConcept C38652104 @default.
- W2992555314 hasConcept C41008148 @default.
- W2992555314 hasConcept C43214815 @default.
- W2992555314 hasConcept C50644808 @default.
- W2992555314 hasConcept C62520636 @default.
- W2992555314 hasConcept C76178495 @default.
- W2992555314 hasConcept C79158427 @default.
- W2992555314 hasConcept C86803240 @default.
- W2992555314 hasConceptScore W2992555314C119857082 @default.
- W2992555314 hasConceptScore W2992555314C121332964 @default.
- W2992555314 hasConceptScore W2992555314C124101348 @default.
- W2992555314 hasConceptScore W2992555314C154945302 @default.
- W2992555314 hasConceptScore W2992555314C155032097 @default.
- W2992555314 hasConceptScore W2992555314C163258240 @default.
- W2992555314 hasConceptScore W2992555314C177606310 @default.
- W2992555314 hasConceptScore W2992555314C18903297 @default.
- W2992555314 hasConceptScore W2992555314C19768560 @default.
- W2992555314 hasConceptScore W2992555314C199360897 @default.
- W2992555314 hasConceptScore W2992555314C26517878 @default.
- W2992555314 hasConceptScore W2992555314C2777904410 @default.
- W2992555314 hasConceptScore W2992555314C38652104 @default.
- W2992555314 hasConceptScore W2992555314C41008148 @default.
- W2992555314 hasConceptScore W2992555314C43214815 @default.
- W2992555314 hasConceptScore W2992555314C50644808 @default.
- W2992555314 hasConceptScore W2992555314C62520636 @default.
- W2992555314 hasConceptScore W2992555314C76178495 @default.
- W2992555314 hasConceptScore W2992555314C79158427 @default.
- W2992555314 hasConceptScore W2992555314C86803240 @default.
- W2992555314 hasLocation W29925553141 @default.
- W2992555314 hasOpenAccess W2992555314 @default.
- W2992555314 hasPrimaryLocation W29925553141 @default.
- W2992555314 hasRelatedWork W1495379181 @default.
- W2992555314 hasRelatedWork W1976538107 @default.
- W2992555314 hasRelatedWork W2012442318 @default.
- W2992555314 hasRelatedWork W2117903872 @default.
- W2992555314 hasRelatedWork W2157746493 @default.
- W2992555314 hasRelatedWork W2792697259 @default.
- W2992555314 hasRelatedWork W2894173309 @default.
- W2992555314 hasRelatedWork W2961085424 @default.
- W2992555314 hasRelatedWork W4206400463 @default.
- W2992555314 hasRelatedWork W63071447 @default.
- W2992555314 hasVolume "115" @default.
- W2992555314 isParatext "false" @default.