Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992595730> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2992595730 abstract "Abstract A machine learning algorithm that performs multifidelity domain decomposition is introduced. While the design of complex systems can be facilitated by numerical simulations, the determination of appropriate physics couplings and levels of model fidelity can be challenging. The proposed method automatically divides the computational domain into subregions and assigns required fidelity level, using a small number of high fidelity simulations to generate training data and low fidelity solutions as input data. Unsupervised and supervised machine learning algorithms are used to correlate features from low fidelity solutions to fidelity assignment. The effectiveness of the method is demonstrated in a problem of viscous fluid flow around a cylinder at Re ≈ 20. Ling et al. built physics-informed invariance and symmetry properties into machine learning models and demonstrated improved model generalizability. Along these lines, we avoid using problem dependent features such as coordinates of sample points, object geometry or flow conditions as explicit inputs to the machine learning model. Use of pointwise flow features generates large data sets from only one or two high fidelity simulations, and the fidelity predictor model achieved 99.5% accuracy at training points. The trained model was shown to be capable of predicting a fidelity map for a problem with an altered cylinder radius. A significant improvement in the prediction performance was seen when inputs are expanded to include multiscale features that incorporate neighborhood information." @default.
- W2992595730 created "2019-12-13" @default.
- W2992595730 creator A5007680178 @default.
- W2992595730 creator A5024201361 @default.
- W2992595730 creator A5027958940 @default.
- W2992595730 creator A5031207178 @default.
- W2992595730 creator A5067345145 @default.
- W2992595730 creator A5085270844 @default.
- W2992595730 date "2019-09-09" @default.
- W2992595730 modified "2023-09-23" @default.
- W2992595730 title "Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping" @default.
- W2992595730 doi "https://doi.org/10.1115/smasis2019-5515" @default.
- W2992595730 hasPublicationYear "2019" @default.
- W2992595730 type Work @default.
- W2992595730 sameAs 2992595730 @default.
- W2992595730 citedByCount "1" @default.
- W2992595730 countsByYear W29925957302020 @default.
- W2992595730 crossrefType "proceedings-article" @default.
- W2992595730 hasAuthorship W2992595730A5007680178 @default.
- W2992595730 hasAuthorship W2992595730A5024201361 @default.
- W2992595730 hasAuthorship W2992595730A5027958940 @default.
- W2992595730 hasAuthorship W2992595730A5031207178 @default.
- W2992595730 hasAuthorship W2992595730A5067345145 @default.
- W2992595730 hasAuthorship W2992595730A5085270844 @default.
- W2992595730 hasConcept C11413529 @default.
- W2992595730 hasConcept C119857082 @default.
- W2992595730 hasConcept C134306372 @default.
- W2992595730 hasConcept C154945302 @default.
- W2992595730 hasConcept C2776459999 @default.
- W2992595730 hasConcept C2777984123 @default.
- W2992595730 hasConcept C33923547 @default.
- W2992595730 hasConcept C41008148 @default.
- W2992595730 hasConcept C76155785 @default.
- W2992595730 hasConceptScore W2992595730C11413529 @default.
- W2992595730 hasConceptScore W2992595730C119857082 @default.
- W2992595730 hasConceptScore W2992595730C134306372 @default.
- W2992595730 hasConceptScore W2992595730C154945302 @default.
- W2992595730 hasConceptScore W2992595730C2776459999 @default.
- W2992595730 hasConceptScore W2992595730C2777984123 @default.
- W2992595730 hasConceptScore W2992595730C33923547 @default.
- W2992595730 hasConceptScore W2992595730C41008148 @default.
- W2992595730 hasConceptScore W2992595730C76155785 @default.
- W2992595730 hasLocation W29925957301 @default.
- W2992595730 hasOpenAccess W2992595730 @default.
- W2992595730 hasPrimaryLocation W29925957301 @default.
- W2992595730 hasRelatedWork W10632578 @default.
- W2992595730 hasRelatedWork W12399688 @default.
- W2992595730 hasRelatedWork W12463128 @default.
- W2992595730 hasRelatedWork W3729861 @default.
- W2992595730 hasRelatedWork W4162081 @default.
- W2992595730 hasRelatedWork W6277509 @default.
- W2992595730 hasRelatedWork W7119380 @default.
- W2992595730 hasRelatedWork W7244409 @default.
- W2992595730 hasRelatedWork W9373557 @default.
- W2992595730 hasRelatedWork W8182991 @default.
- W2992595730 isParatext "false" @default.
- W2992595730 isRetracted "false" @default.
- W2992595730 magId "2992595730" @default.
- W2992595730 workType "article" @default.