Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992766064> ?p ?o ?g. }
- W2992766064 abstract "To tackle Named Entity Recognition (NER) tasks, supervised methods need to obtain sufficient cleanly annotated data, which is labor and time consuming. On the contrary, distantly supervised methods acquire automatically annotated data using dictionaries to alleviate this requirement. Unfortunately, dictionaries hinder the effectiveness of distantly supervised methods for NER due to its limited coverage, especially in specific domains. In this paper, we aim at the limitations of the dictionary usage and mention boundary detection. We generalize the distant supervision by extending the dictionary with headword based non-exact matching. We apply a function to better weight the matched entity mentions. We propose a span-level model, which classifies all the possible spans then infers the selected spans with a proposed dynamic programming algorithm. Experiments on all three benchmark datasets demonstrate that our method outperforms previous state-of-the-art distantly supervised methods." @default.
- W2992766064 created "2019-12-13" @default.
- W2992766064 creator A5014937762 @default.
- W2992766064 creator A5046597133 @default.
- W2992766064 creator A5058236349 @default.
- W2992766064 creator A5070063847 @default.
- W2992766064 creator A5083581319 @default.
- W2992766064 date "2019-12-03" @default.
- W2992766064 modified "2023-09-28" @default.
- W2992766064 title "HAMNER: Headword Amplified Multi-span Distantly Supervised Method for Domain Specific Named Entity Recognition" @default.
- W2992766064 cites W2004763266 @default.
- W2992766064 cites W2053238041 @default.
- W2992766064 cites W2094728533 @default.
- W2992766064 cites W2096507791 @default.
- W2992766064 cites W2107598941 @default.
- W2992766064 cites W2145310422 @default.
- W2992766064 cites W2169099542 @default.
- W2992766064 cites W2250539671 @default.
- W2992766064 cites W2250893320 @default.
- W2992766064 cites W2296283641 @default.
- W2992766064 cites W2346452181 @default.
- W2992766064 cites W2474198877 @default.
- W2992766064 cites W2484269232 @default.
- W2992766064 cites W2513587312 @default.
- W2992766064 cites W2527896214 @default.
- W2992766064 cites W2550305434 @default.
- W2992766064 cites W2593560537 @default.
- W2992766064 cites W2605024074 @default.
- W2992766064 cites W2609602893 @default.
- W2992766064 cites W2788474500 @default.
- W2992766064 cites W2796254167 @default.
- W2992766064 cites W2808352552 @default.
- W2992766064 cites W2808791064 @default.
- W2992766064 cites W2882319491 @default.
- W2992766064 cites W2891383691 @default.
- W2992766064 cites W2892252202 @default.
- W2992766064 cites W2962739339 @default.
- W2992766064 cites W2962803243 @default.
- W2992766064 cites W2962902328 @default.
- W2992766064 cites W2962987552 @default.
- W2992766064 cites W2963386218 @default.
- W2992766064 cites W2964121744 @default.
- W2992766064 cites W2965435509 @default.
- W2992766064 cites W2982078886 @default.
- W2992766064 cites W3011594683 @default.
- W2992766064 doi "https://doi.org/10.48550/arxiv.1912.01731" @default.
- W2992766064 hasPublicationYear "2019" @default.
- W2992766064 type Work @default.
- W2992766064 sameAs 2992766064 @default.
- W2992766064 citedByCount "1" @default.
- W2992766064 countsByYear W29927660642018 @default.
- W2992766064 crossrefType "posted-content" @default.
- W2992766064 hasAuthorship W2992766064A5014937762 @default.
- W2992766064 hasAuthorship W2992766064A5046597133 @default.
- W2992766064 hasAuthorship W2992766064A5058236349 @default.
- W2992766064 hasAuthorship W2992766064A5070063847 @default.
- W2992766064 hasAuthorship W2992766064A5083581319 @default.
- W2992766064 hasBestOaLocation W29927660641 @default.
- W2992766064 hasConcept C105795698 @default.
- W2992766064 hasConcept C119857082 @default.
- W2992766064 hasConcept C13280743 @default.
- W2992766064 hasConcept C134306372 @default.
- W2992766064 hasConcept C14036430 @default.
- W2992766064 hasConcept C153180895 @default.
- W2992766064 hasConcept C154945302 @default.
- W2992766064 hasConcept C162324750 @default.
- W2992766064 hasConcept C165064840 @default.
- W2992766064 hasConcept C185798385 @default.
- W2992766064 hasConcept C187736073 @default.
- W2992766064 hasConcept C204321447 @default.
- W2992766064 hasConcept C205649164 @default.
- W2992766064 hasConcept C2776145971 @default.
- W2992766064 hasConcept C2779135771 @default.
- W2992766064 hasConcept C2780451532 @default.
- W2992766064 hasConcept C33923547 @default.
- W2992766064 hasConcept C36503486 @default.
- W2992766064 hasConcept C41008148 @default.
- W2992766064 hasConcept C78458016 @default.
- W2992766064 hasConcept C86803240 @default.
- W2992766064 hasConceptScore W2992766064C105795698 @default.
- W2992766064 hasConceptScore W2992766064C119857082 @default.
- W2992766064 hasConceptScore W2992766064C13280743 @default.
- W2992766064 hasConceptScore W2992766064C134306372 @default.
- W2992766064 hasConceptScore W2992766064C14036430 @default.
- W2992766064 hasConceptScore W2992766064C153180895 @default.
- W2992766064 hasConceptScore W2992766064C154945302 @default.
- W2992766064 hasConceptScore W2992766064C162324750 @default.
- W2992766064 hasConceptScore W2992766064C165064840 @default.
- W2992766064 hasConceptScore W2992766064C185798385 @default.
- W2992766064 hasConceptScore W2992766064C187736073 @default.
- W2992766064 hasConceptScore W2992766064C204321447 @default.
- W2992766064 hasConceptScore W2992766064C205649164 @default.
- W2992766064 hasConceptScore W2992766064C2776145971 @default.
- W2992766064 hasConceptScore W2992766064C2779135771 @default.
- W2992766064 hasConceptScore W2992766064C2780451532 @default.
- W2992766064 hasConceptScore W2992766064C33923547 @default.
- W2992766064 hasConceptScore W2992766064C36503486 @default.
- W2992766064 hasConceptScore W2992766064C41008148 @default.
- W2992766064 hasConceptScore W2992766064C78458016 @default.
- W2992766064 hasConceptScore W2992766064C86803240 @default.