Matches in SemOpenAlex for { <https://semopenalex.org/work/W2992853034> ?p ?o ?g. }
- W2992853034 endingPage "213" @default.
- W2992853034 startingPage "208" @default.
- W2992853034 abstract "Abstract Purpose of Review We critically evaluate the future potential of machine learning (ML), deep learning (DL), and artificial intelligence (AI) in precision medicine. The goal of this work is to show progress in ML in digital health, to exemplify future needs and trends, and to identify any essential prerequisites of AI and ML for precision health. Recent Findings High-throughput technologies are delivering growing volumes of biomedical data, such as large-scale genome-wide sequencing assays; libraries of medical images; or drug perturbation screens of healthy, developing, and diseased tissue. Multi-omics data in biomedicine is deep and complex, offering an opportunity for data-driven insights and automated disease classification. Learning from these data will open our understanding and definition of healthy baselines and disease signatures. State-of-the-art applications of deep neural networks include digital image recognition, single-cell clustering, and virtual drug screens, demonstrating breadths and power of ML in biomedicine. Summary Significantly, AI and systems biology have embraced big data challenges and may enable novel biotechnology-derived therapies to facilitate the implementation of precision medicine approaches." @default.
- W2992853034 created "2019-12-13" @default.
- W2992853034 creator A5047057665 @default.
- W2992853034 date "2019-12-01" @default.
- W2992853034 modified "2023-10-03" @default.
- W2992853034 title "Opportunities for Artificial Intelligence in Advancing Precision Medicine" @default.
- W2992853034 cites W2028279608 @default.
- W2992853034 cites W2056833498 @default.
- W2992853034 cites W2108933868 @default.
- W2992853034 cites W2145339207 @default.
- W2992853034 cites W2257979135 @default.
- W2992853034 cites W2264568396 @default.
- W2992853034 cites W2581082771 @default.
- W2992853034 cites W2588904304 @default.
- W2992853034 cites W2592680049 @default.
- W2992853034 cites W2747592475 @default.
- W2992853034 cites W2750796620 @default.
- W2992853034 cites W2766959028 @default.
- W2992853034 cites W2781012674 @default.
- W2992853034 cites W2790808809 @default.
- W2992853034 cites W2794301983 @default.
- W2992853034 cites W2796559433 @default.
- W2992853034 cites W2800392236 @default.
- W2992853034 cites W2801991413 @default.
- W2992853034 cites W2884810617 @default.
- W2992853034 cites W2893221764 @default.
- W2992853034 cites W2901794234 @default.
- W2992853034 cites W2912194425 @default.
- W2992853034 cites W2919115771 @default.
- W2992853034 cites W2922501824 @default.
- W2992853034 cites W2923300855 @default.
- W2992853034 cites W2924231309 @default.
- W2992853034 cites W2937307539 @default.
- W2992853034 cites W2937917790 @default.
- W2992853034 cites W2940242941 @default.
- W2992853034 cites W2945807221 @default.
- W2992853034 cites W2946404782 @default.
- W2992853034 cites W2949978782 @default.
- W2992853034 cites W2950372712 @default.
- W2992853034 cites W2952340717 @default.
- W2992853034 cites W2952459265 @default.
- W2992853034 cites W2953641512 @default.
- W2992853034 cites W2954088480 @default.
- W2992853034 cites W2960634499 @default.
- W2992853034 cites W2961798429 @default.
- W2992853034 cites W2963657382 @default.
- W2992853034 cites W2964345665 @default.
- W2992853034 cites W2965552103 @default.
- W2992853034 cites W2966848807 @default.
- W2992853034 cites W2967444033 @default.
- W2992853034 cites W2969343193 @default.
- W2992853034 cites W2969705573 @default.
- W2992853034 cites W2969890124 @default.
- W2992853034 cites W2970771711 @default.
- W2992853034 cites W2972211076 @default.
- W2992853034 cites W2975863049 @default.
- W2992853034 cites W2975979350 @default.
- W2992853034 cites W2979911343 @default.
- W2992853034 cites W3098949126 @default.
- W2992853034 cites W4249098363 @default.
- W2992853034 doi "https://doi.org/10.1007/s40142-019-00177-4" @default.
- W2992853034 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6927552" @default.
- W2992853034 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31871830" @default.
- W2992853034 hasPublicationYear "2019" @default.
- W2992853034 type Work @default.
- W2992853034 sameAs 2992853034 @default.
- W2992853034 citedByCount "44" @default.
- W2992853034 countsByYear W29928530342020 @default.
- W2992853034 countsByYear W29928530342021 @default.
- W2992853034 countsByYear W29928530342022 @default.
- W2992853034 countsByYear W29928530342023 @default.
- W2992853034 crossrefType "journal-article" @default.
- W2992853034 hasAuthorship W2992853034A5047057665 @default.
- W2992853034 hasBestOaLocation W29928530341 @default.
- W2992853034 hasConcept C108583219 @default.
- W2992853034 hasConcept C119857082 @default.
- W2992853034 hasConcept C124101348 @default.
- W2992853034 hasConcept C142724271 @default.
- W2992853034 hasConcept C154945302 @default.
- W2992853034 hasConcept C163763905 @default.
- W2992853034 hasConcept C2522767166 @default.
- W2992853034 hasConcept C41008148 @default.
- W2992853034 hasConcept C50644808 @default.
- W2992853034 hasConcept C60644358 @default.
- W2992853034 hasConcept C66782513 @default.
- W2992853034 hasConcept C71924100 @default.
- W2992853034 hasConcept C73555534 @default.
- W2992853034 hasConcept C75684735 @default.
- W2992853034 hasConcept C86803240 @default.
- W2992853034 hasConceptScore W2992853034C108583219 @default.
- W2992853034 hasConceptScore W2992853034C119857082 @default.
- W2992853034 hasConceptScore W2992853034C124101348 @default.
- W2992853034 hasConceptScore W2992853034C142724271 @default.
- W2992853034 hasConceptScore W2992853034C154945302 @default.
- W2992853034 hasConceptScore W2992853034C163763905 @default.
- W2992853034 hasConceptScore W2992853034C2522767166 @default.
- W2992853034 hasConceptScore W2992853034C41008148 @default.
- W2992853034 hasConceptScore W2992853034C50644808 @default.