Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993149128> ?p ?o ?g. }
- W2993149128 abstract "Reinforcement learning is an appropriate and successful method to robustly perform low-level robot control under noisy conditions. Symbolic action planning is useful to resolve causal dependencies and to break a causally complex problem down into a sequence of simpler high-level actions. A problem with the integration of both approaches is that action planning is based on discrete high-level action- and state spaces, whereas reinforcement learning is usually driven by a continuous reward function. However, recent advances in reinforcement learning, specifically, universal value function approximators and hindsight experience replay, have focused on goal-independent methods based on sparse rewards. In this article, we build on these novel methods to facilitate the integration of action planning with reinforcement learning by exploiting the reward-sparsity as a bridge between the high-level and low-level state- and control spaces. As a result, we demonstrate that the integrated neuro-symbolic method is able to solve object manipulation problems that involve tool use and non-trivial causal dependencies under noisy conditions, exploiting both data and knowledge." @default.
- W2993149128 created "2019-12-13" @default.
- W2993149128 creator A5033486668 @default.
- W2993149128 creator A5050108731 @default.
- W2993149128 creator A5077148400 @default.
- W2993149128 date "2019-05-23" @default.
- W2993149128 modified "2023-09-28" @default.
- W2993149128 title "From semantics to execution: Integrating action planning with reinforcement learning for robotic causal problem-solving." @default.
- W2993149128 cites W1491843047 @default.
- W2993149128 cites W1506047933 @default.
- W2993149128 cites W1588910350 @default.
- W2993149128 cites W1602079996 @default.
- W2993149128 cites W1771410628 @default.
- W2993149128 cites W1777239053 @default.
- W2993149128 cites W1980035368 @default.
- W2993149128 cites W2015149365 @default.
- W2993149128 cites W2048226872 @default.
- W2993149128 cites W2103167267 @default.
- W2993149128 cites W2109910161 @default.
- W2993149128 cites W2112483970 @default.
- W2993149128 cites W2115606248 @default.
- W2993149128 cites W2140135625 @default.
- W2993149128 cites W2141841102 @default.
- W2993149128 cites W2158782408 @default.
- W2993149128 cites W2159420891 @default.
- W2993149128 cites W2308567354 @default.
- W2993149128 cites W2337392266 @default.
- W2993149128 cites W2594829461 @default.
- W2993149128 cites W2736601468 @default.
- W2993149128 cites W2744921630 @default.
- W2993149128 cites W2787666871 @default.
- W2993149128 cites W2803281228 @default.
- W2993149128 cites W2805560727 @default.
- W2993149128 cites W2805883505 @default.
- W2993149128 cites W2811111819 @default.
- W2993149128 cites W2885163910 @default.
- W2993149128 cites W2892673593 @default.
- W2993149128 cites W2905310161 @default.
- W2993149128 cites W2911054817 @default.
- W2993149128 cites W2920215304 @default.
- W2993149128 cites W2962715211 @default.
- W2993149128 cites W2962823158 @default.
- W2993149128 cites W2963262099 @default.
- W2993149128 cites W2963864421 @default.
- W2993149128 cites W2963903510 @default.
- W2993149128 cites W2964001908 @default.
- W2993149128 cites W2964121744 @default.
- W2993149128 cites W2964227312 @default.
- W2993149128 cites W2978938326 @default.
- W2993149128 cites W2990747716 @default.
- W2993149128 cites W3153376960 @default.
- W2993149128 cites W567721252 @default.
- W2993149128 hasPublicationYear "2019" @default.
- W2993149128 type Work @default.
- W2993149128 sameAs 2993149128 @default.
- W2993149128 citedByCount "2" @default.
- W2993149128 countsByYear W29931491282020 @default.
- W2993149128 countsByYear W29931491282021 @default.
- W2993149128 crossrefType "posted-content" @default.
- W2993149128 hasAuthorship W2993149128A5033486668 @default.
- W2993149128 hasAuthorship W2993149128A5050108731 @default.
- W2993149128 hasAuthorship W2993149128A5077148400 @default.
- W2993149128 hasConcept C100776233 @default.
- W2993149128 hasConcept C10347200 @default.
- W2993149128 hasConcept C119857082 @default.
- W2993149128 hasConcept C121332964 @default.
- W2993149128 hasConcept C126255220 @default.
- W2993149128 hasConcept C126322002 @default.
- W2993149128 hasConcept C14036430 @default.
- W2993149128 hasConcept C14646407 @default.
- W2993149128 hasConcept C154945302 @default.
- W2993149128 hasConcept C15744967 @default.
- W2993149128 hasConcept C180747234 @default.
- W2993149128 hasConcept C184337299 @default.
- W2993149128 hasConcept C199360897 @default.
- W2993149128 hasConcept C2780791683 @default.
- W2993149128 hasConcept C33923547 @default.
- W2993149128 hasConcept C41008148 @default.
- W2993149128 hasConcept C62520636 @default.
- W2993149128 hasConcept C71924100 @default.
- W2993149128 hasConcept C78458016 @default.
- W2993149128 hasConcept C86803240 @default.
- W2993149128 hasConcept C90509273 @default.
- W2993149128 hasConcept C97541855 @default.
- W2993149128 hasConceptScore W2993149128C100776233 @default.
- W2993149128 hasConceptScore W2993149128C10347200 @default.
- W2993149128 hasConceptScore W2993149128C119857082 @default.
- W2993149128 hasConceptScore W2993149128C121332964 @default.
- W2993149128 hasConceptScore W2993149128C126255220 @default.
- W2993149128 hasConceptScore W2993149128C126322002 @default.
- W2993149128 hasConceptScore W2993149128C14036430 @default.
- W2993149128 hasConceptScore W2993149128C14646407 @default.
- W2993149128 hasConceptScore W2993149128C154945302 @default.
- W2993149128 hasConceptScore W2993149128C15744967 @default.
- W2993149128 hasConceptScore W2993149128C180747234 @default.
- W2993149128 hasConceptScore W2993149128C184337299 @default.
- W2993149128 hasConceptScore W2993149128C199360897 @default.
- W2993149128 hasConceptScore W2993149128C2780791683 @default.
- W2993149128 hasConceptScore W2993149128C33923547 @default.
- W2993149128 hasConceptScore W2993149128C41008148 @default.