Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993219936> ?p ?o ?g. }
- W2993219936 abstract "Abstract Recently, deep-learning-based approaches have been proposed for the classification of neuroimaging data related to Alzheimer’s disease (AD), and significant progress has been made. However, end-to-end learning that is capable of maximizing the impact of deep learning has yet to receive much attention due to the endemic challenge of neuroimaging caused by the scarcity of data. Thus, this study presents an approach meant to encourage the end-to-end learning of a volumetric convolutional neural network (CNN) model for four binary classification tasks (AD vs. normal control (NC), progressive mild cognitive impairment (pMCI) vs. NC, stable mild cognitive impairment (sMCI) vs. NC and pMCI vs. sMCI) based on magnetic resonance imaging (MRI) and visualizes its outcomes in terms of the decision of the CNNs without any human intervention. In the proposed approach, we use convolutional autoencoder (CAE)-based unsupervised learning for the AD vs. NC classification task, and supervised transfer learning is applied to solve the pMCI vs. sMCI classification task. To detect the most important biomarkers related to AD and pMCI, a gradient-based visualization method that approximates the spatial influence of the CNN model’s decision was applied. To validate the contributions of this study, we conducted experiments on the ADNI database, and the results demonstrated that the proposed approach achieved the accuracies of 86.60% and 73.95% for the AD and pMCI classification tasks respectively, outperforming other network models. In the visualization results, the temporal and parietal lobes were identified as key regions for classification." @default.
- W2993219936 created "2019-12-13" @default.
- W2993219936 creator A5005786868 @default.
- W2993219936 creator A5025445526 @default.
- W2993219936 creator A5041308812 @default.
- W2993219936 creator A5057419444 @default.
- W2993219936 creator A5089902772 @default.
- W2993219936 date "2019-12-01" @default.
- W2993219936 modified "2023-10-14" @default.
- W2993219936 title "Classification and Visualization of Alzheimer’s Disease using Volumetric Convolutional Neural Network and Transfer Learning" @default.
- W2993219936 cites W1457602677 @default.
- W2993219936 cites W1535222849 @default.
- W2993219936 cites W155481447 @default.
- W2993219936 cites W1760829075 @default.
- W2993219936 cites W1948745668 @default.
- W2993219936 cites W1995571867 @default.
- W2993219936 cites W2018935975 @default.
- W2993219936 cites W2057536936 @default.
- W2993219936 cites W2084220915 @default.
- W2993219936 cites W2091990223 @default.
- W2993219936 cites W2107564884 @default.
- W2993219936 cites W2112436745 @default.
- W2993219936 cites W2120111102 @default.
- W2993219936 cites W2124386111 @default.
- W2993219936 cites W2136655611 @default.
- W2993219936 cites W2136922672 @default.
- W2993219936 cites W2155298532 @default.
- W2993219936 cites W2160774676 @default.
- W2993219936 cites W2165698076 @default.
- W2993219936 cites W2165744911 @default.
- W2993219936 cites W2181561812 @default.
- W2993219936 cites W2183341477 @default.
- W2993219936 cites W2194775991 @default.
- W2993219936 cites W2214920251 @default.
- W2993219936 cites W2336687820 @default.
- W2993219936 cites W2345010043 @default.
- W2993219936 cites W2533800772 @default.
- W2993219936 cites W2551454534 @default.
- W2993219936 cites W2566613935 @default.
- W2993219936 cites W2569531558 @default.
- W2993219936 cites W2580596898 @default.
- W2993219936 cites W2582180708 @default.
- W2993219936 cites W2592343442 @default.
- W2993219936 cites W2795442143 @default.
- W2993219936 cites W2885850791 @default.
- W2993219936 cites W2901568162 @default.
- W2993219936 cites W2914209001 @default.
- W2993219936 cites W2919115771 @default.
- W2993219936 cites W2929508119 @default.
- W2993219936 cites W2942882625 @default.
- W2993219936 cites W2950651700 @default.
- W2993219936 cites W2962858109 @default.
- W2993219936 cites W2972355689 @default.
- W2993219936 doi "https://doi.org/10.1038/s41598-019-54548-6" @default.
- W2993219936 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6890708" @default.
- W2993219936 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31796817" @default.
- W2993219936 hasPublicationYear "2019" @default.
- W2993219936 type Work @default.
- W2993219936 sameAs 2993219936 @default.
- W2993219936 citedByCount "151" @default.
- W2993219936 countsByYear W29932199362012 @default.
- W2993219936 countsByYear W29932199362020 @default.
- W2993219936 countsByYear W29932199362021 @default.
- W2993219936 countsByYear W29932199362022 @default.
- W2993219936 countsByYear W29932199362023 @default.
- W2993219936 crossrefType "journal-article" @default.
- W2993219936 hasAuthorship W2993219936A5005786868 @default.
- W2993219936 hasAuthorship W2993219936A5025445526 @default.
- W2993219936 hasAuthorship W2993219936A5041308812 @default.
- W2993219936 hasAuthorship W2993219936A5057419444 @default.
- W2993219936 hasAuthorship W2993219936A5089902772 @default.
- W2993219936 hasBestOaLocation W29932199361 @default.
- W2993219936 hasConcept C101738243 @default.
- W2993219936 hasConcept C108583219 @default.
- W2993219936 hasConcept C119857082 @default.
- W2993219936 hasConcept C12267149 @default.
- W2993219936 hasConcept C150899416 @default.
- W2993219936 hasConcept C153180895 @default.
- W2993219936 hasConcept C154945302 @default.
- W2993219936 hasConcept C15744967 @default.
- W2993219936 hasConcept C162324750 @default.
- W2993219936 hasConcept C169760540 @default.
- W2993219936 hasConcept C169900460 @default.
- W2993219936 hasConcept C187736073 @default.
- W2993219936 hasConcept C2780451532 @default.
- W2993219936 hasConcept C28006648 @default.
- W2993219936 hasConcept C36464697 @default.
- W2993219936 hasConcept C41008148 @default.
- W2993219936 hasConcept C58693492 @default.
- W2993219936 hasConcept C66905080 @default.
- W2993219936 hasConcept C8038995 @default.
- W2993219936 hasConcept C81363708 @default.
- W2993219936 hasConceptScore W2993219936C101738243 @default.
- W2993219936 hasConceptScore W2993219936C108583219 @default.
- W2993219936 hasConceptScore W2993219936C119857082 @default.
- W2993219936 hasConceptScore W2993219936C12267149 @default.
- W2993219936 hasConceptScore W2993219936C150899416 @default.
- W2993219936 hasConceptScore W2993219936C153180895 @default.
- W2993219936 hasConceptScore W2993219936C154945302 @default.
- W2993219936 hasConceptScore W2993219936C15744967 @default.