Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993219986> ?p ?o ?g. }
- W2993219986 endingPage "220" @default.
- W2993219986 startingPage "210" @default.
- W2993219986 abstract "With the rapid development of China’s industrialization, the air pollution is becoming more and more serious. It is vital for us to predict the air quality for determining the further prevention measures of avoiding the brought disasters. In this paper, we are going to propose an approach of predicting the air quality based on the multiple data features through fusing the multiple machine learning models. The approach takes the meteorological data and air quality data for the past six days as one batch of input (the whole data set is for 46 days) and employs a multi-model fusion to provide an improved 24-hour prediction of PM2.5 pollutant concentration all over Beijing. During the above process, two focal feature groups are composed. The first focal feature group contains the historical meteorological data, while the second group includes the statistical information, the date information and the polynomial variations. Besides the two groups, we complement one million more data items by employing the time sliding means. Among the supplementary data, we select the most critical 500 features with Light Gradient Boosting Machine (LightGBM) model and send the features as the input to Gradient Boosting Decision Tree (GBDT) and LightGBM models. Meanwhile, we screen the most critical 300 features with eXtreme Gradient Boosting (XGBoost) model and send them as the input to the three prediction models. Referring to each of the models, we respectively gain the optimal parameters through grid search methods and then fuse the models’ contribution with the linear weighting. The experiments indicate that the proposed approach based on the weighting fusion is better than that provided by a single modeling scheme, and the loss value is 0.4158 under the SMAPE index. • An approach of predicting air quality with fusing the multiple machine learning models. • The machine learning solutions to model PM2.5 pollutant concentration distribution feature. • The time sliding means for developing one million more data items. • The fusion of multiple models under linear weighting strategy. The experiments indicate that the approach based on the weighting fusion is better than that provided by the single modeling scheme, and the loss value is 0.4158 under the SMAPE index." @default.
- W2993219986 created "2019-12-13" @default.
- W2993219986 creator A5010141500 @default.
- W2993219986 creator A5035422964 @default.
- W2993219986 creator A5053209536 @default.
- W2993219986 creator A5062425539 @default.
- W2993219986 creator A5065488679 @default.
- W2993219986 creator A5070760232 @default.
- W2993219986 creator A5080280424 @default.
- W2993219986 date "2020-05-01" @default.
- W2993219986 modified "2023-10-12" @default.
- W2993219986 title "A feature selection and multi-model fusion-based approach of predicting air quality" @default.
- W2993219986 cites W1678356000 @default.
- W2993219986 cites W1968840994 @default.
- W2993219986 cites W1970500744 @default.
- W2993219986 cites W2008641894 @default.
- W2993219986 cites W2028163949 @default.
- W2993219986 cites W2041471468 @default.
- W2993219986 cites W2146848957 @default.
- W2993219986 cites W2192023937 @default.
- W2993219986 cites W2272706126 @default.
- W2993219986 cites W2477275132 @default.
- W2993219986 cites W2766040222 @default.
- W2993219986 cites W2794659547 @default.
- W2993219986 cites W2799286067 @default.
- W2993219986 cites W2812669263 @default.
- W2993219986 cites W2891750563 @default.
- W2993219986 cites W2914477964 @default.
- W2993219986 cites W4213263325 @default.
- W2993219986 doi "https://doi.org/10.1016/j.isatra.2019.11.023" @default.
- W2993219986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31812248" @default.
- W2993219986 hasPublicationYear "2020" @default.
- W2993219986 type Work @default.
- W2993219986 sameAs 2993219986 @default.
- W2993219986 citedByCount "46" @default.
- W2993219986 countsByYear W29932199862020 @default.
- W2993219986 countsByYear W29932199862021 @default.
- W2993219986 countsByYear W29932199862022 @default.
- W2993219986 countsByYear W29932199862023 @default.
- W2993219986 crossrefType "journal-article" @default.
- W2993219986 hasAuthorship W2993219986A5010141500 @default.
- W2993219986 hasAuthorship W2993219986A5035422964 @default.
- W2993219986 hasAuthorship W2993219986A5053209536 @default.
- W2993219986 hasAuthorship W2993219986A5062425539 @default.
- W2993219986 hasAuthorship W2993219986A5065488679 @default.
- W2993219986 hasAuthorship W2993219986A5070760232 @default.
- W2993219986 hasAuthorship W2993219986A5080280424 @default.
- W2993219986 hasConcept C119857082 @default.
- W2993219986 hasConcept C124101348 @default.
- W2993219986 hasConcept C126314574 @default.
- W2993219986 hasConcept C126838900 @default.
- W2993219986 hasConcept C138885662 @default.
- W2993219986 hasConcept C148483581 @default.
- W2993219986 hasConcept C153294291 @default.
- W2993219986 hasConcept C154945302 @default.
- W2993219986 hasConcept C169258074 @default.
- W2993219986 hasConcept C183115368 @default.
- W2993219986 hasConcept C205649164 @default.
- W2993219986 hasConcept C2776401178 @default.
- W2993219986 hasConcept C2780150128 @default.
- W2993219986 hasConcept C41008148 @default.
- W2993219986 hasConcept C41895202 @default.
- W2993219986 hasConcept C46686674 @default.
- W2993219986 hasConcept C50644808 @default.
- W2993219986 hasConcept C70153297 @default.
- W2993219986 hasConcept C71924100 @default.
- W2993219986 hasConcept C84525736 @default.
- W2993219986 hasConceptScore W2993219986C119857082 @default.
- W2993219986 hasConceptScore W2993219986C124101348 @default.
- W2993219986 hasConceptScore W2993219986C126314574 @default.
- W2993219986 hasConceptScore W2993219986C126838900 @default.
- W2993219986 hasConceptScore W2993219986C138885662 @default.
- W2993219986 hasConceptScore W2993219986C148483581 @default.
- W2993219986 hasConceptScore W2993219986C153294291 @default.
- W2993219986 hasConceptScore W2993219986C154945302 @default.
- W2993219986 hasConceptScore W2993219986C169258074 @default.
- W2993219986 hasConceptScore W2993219986C183115368 @default.
- W2993219986 hasConceptScore W2993219986C205649164 @default.
- W2993219986 hasConceptScore W2993219986C2776401178 @default.
- W2993219986 hasConceptScore W2993219986C2780150128 @default.
- W2993219986 hasConceptScore W2993219986C41008148 @default.
- W2993219986 hasConceptScore W2993219986C41895202 @default.
- W2993219986 hasConceptScore W2993219986C46686674 @default.
- W2993219986 hasConceptScore W2993219986C50644808 @default.
- W2993219986 hasConceptScore W2993219986C70153297 @default.
- W2993219986 hasConceptScore W2993219986C71924100 @default.
- W2993219986 hasConceptScore W2993219986C84525736 @default.
- W2993219986 hasFunder F4320321001 @default.
- W2993219986 hasFunder F4320335787 @default.
- W2993219986 hasFunder F4320336033 @default.
- W2993219986 hasLocation W29932199861 @default.
- W2993219986 hasLocation W29932199862 @default.
- W2993219986 hasOpenAccess W2993219986 @default.
- W2993219986 hasPrimaryLocation W29932199861 @default.
- W2993219986 hasRelatedWork W3200719183 @default.
- W2993219986 hasRelatedWork W3201348321 @default.
- W2993219986 hasRelatedWork W3204641204 @default.
- W2993219986 hasRelatedWork W3212730154 @default.