Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993273994> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2993273994 abstract "Electromyography (EMG) decoding is an important tool to study how the cortex controls the muscles of the limbs. Both spike and local field potentials (LFPs) have been used to decode EMG in previous studies where good performances have been achieved in both rats and monkeys. However, it is a big challenge to carry out studies in mice because only a few electrodes are available for neural recording. In this study, we tried to decode the EMG signal from the biceps brachii muscle of the forelimb by using the LFP signals of their motor cortex. When mice were performing the lever-pressing task, the EMG and 4-channel LFP signals were synchronously collected. Three decoding algorithms, Kalman Filter, General Regression Neural Network (GRNN) and Recurrent Neural Network (RNN), were employed to extract the envelope of EMG signals from the LFP signals. Our results showed that all three algorithms are able to achieve good decoding performance even only a few channels were used. In addition, RNN achieved the best decoding performance among these algorithms, whose CC and MSE were 0.83 and 0.013 respectively." @default.
- W2993273994 created "2019-12-13" @default.
- W2993273994 creator A5009996306 @default.
- W2993273994 creator A5024584263 @default.
- W2993273994 creator A5047651169 @default.
- W2993273994 creator A5064265803 @default.
- W2993273994 date "2019-10-01" @default.
- W2993273994 modified "2023-09-23" @default.
- W2993273994 title "Decoding Forelimb Muscle Activity with Local Field Potentials from Mouse Motor Cortex" @default.
- W2993273994 cites W1530469796 @default.
- W2993273994 cites W1967466457 @default.
- W2993273994 cites W1976955716 @default.
- W2993273994 cites W2000873088 @default.
- W2993273994 cites W2006437404 @default.
- W2993273994 cites W2016936587 @default.
- W2993273994 cites W2037773230 @default.
- W2993273994 cites W2093100633 @default.
- W2993273994 cites W2103032521 @default.
- W2993273994 cites W2105044329 @default.
- W2993273994 cites W2116988324 @default.
- W2993273994 cites W2138562519 @default.
- W2993273994 cites W2154385999 @default.
- W2993273994 cites W2538079766 @default.
- W2993273994 cites W2538697726 @default.
- W2993273994 cites W2587316859 @default.
- W2993273994 cites W71081281 @default.
- W2993273994 doi "https://doi.org/10.1109/biocas.2019.8919034" @default.
- W2993273994 hasPublicationYear "2019" @default.
- W2993273994 type Work @default.
- W2993273994 sameAs 2993273994 @default.
- W2993273994 citedByCount "0" @default.
- W2993273994 crossrefType "proceedings-article" @default.
- W2993273994 hasAuthorship W2993273994A5009996306 @default.
- W2993273994 hasAuthorship W2993273994A5024584263 @default.
- W2993273994 hasAuthorship W2993273994A5047651169 @default.
- W2993273994 hasAuthorship W2993273994A5064265803 @default.
- W2993273994 hasConcept C11413529 @default.
- W2993273994 hasConcept C117838684 @default.
- W2993273994 hasConcept C153180895 @default.
- W2993273994 hasConcept C154945302 @default.
- W2993273994 hasConcept C15744967 @default.
- W2993273994 hasConcept C169760540 @default.
- W2993273994 hasConcept C24998067 @default.
- W2993273994 hasConcept C2777515770 @default.
- W2993273994 hasConcept C2778373776 @default.
- W2993273994 hasConcept C2778646069 @default.
- W2993273994 hasConcept C2781425419 @default.
- W2993273994 hasConcept C28490314 @default.
- W2993273994 hasConcept C40743351 @default.
- W2993273994 hasConcept C41008148 @default.
- W2993273994 hasConcept C57273362 @default.
- W2993273994 hasConcept C71924100 @default.
- W2993273994 hasConcept C99508421 @default.
- W2993273994 hasConceptScore W2993273994C11413529 @default.
- W2993273994 hasConceptScore W2993273994C117838684 @default.
- W2993273994 hasConceptScore W2993273994C153180895 @default.
- W2993273994 hasConceptScore W2993273994C154945302 @default.
- W2993273994 hasConceptScore W2993273994C15744967 @default.
- W2993273994 hasConceptScore W2993273994C169760540 @default.
- W2993273994 hasConceptScore W2993273994C24998067 @default.
- W2993273994 hasConceptScore W2993273994C2777515770 @default.
- W2993273994 hasConceptScore W2993273994C2778373776 @default.
- W2993273994 hasConceptScore W2993273994C2778646069 @default.
- W2993273994 hasConceptScore W2993273994C2781425419 @default.
- W2993273994 hasConceptScore W2993273994C28490314 @default.
- W2993273994 hasConceptScore W2993273994C40743351 @default.
- W2993273994 hasConceptScore W2993273994C41008148 @default.
- W2993273994 hasConceptScore W2993273994C57273362 @default.
- W2993273994 hasConceptScore W2993273994C71924100 @default.
- W2993273994 hasConceptScore W2993273994C99508421 @default.
- W2993273994 hasLocation W29932739941 @default.
- W2993273994 hasOpenAccess W2993273994 @default.
- W2993273994 hasPrimaryLocation W29932739941 @default.
- W2993273994 hasRelatedWork W1515114925 @default.
- W2993273994 hasRelatedWork W2080277141 @default.
- W2993273994 hasRelatedWork W2087357071 @default.
- W2993273994 hasRelatedWork W2125484614 @default.
- W2993273994 hasRelatedWork W2340109313 @default.
- W2993273994 hasRelatedWork W2538097372 @default.
- W2993273994 hasRelatedWork W2587316859 @default.
- W2993273994 hasRelatedWork W2718663139 @default.
- W2993273994 hasRelatedWork W2774872360 @default.
- W2993273994 hasRelatedWork W2867106051 @default.
- W2993273994 hasRelatedWork W2888725532 @default.
- W2993273994 hasRelatedWork W2907765706 @default.
- W2993273994 hasRelatedWork W2919554100 @default.
- W2993273994 hasRelatedWork W2921163450 @default.
- W2993273994 hasRelatedWork W2951514745 @default.
- W2993273994 hasRelatedWork W2998924601 @default.
- W2993273994 hasRelatedWork W3081685930 @default.
- W2993273994 hasRelatedWork W3137882975 @default.
- W2993273994 hasRelatedWork W38413120 @default.
- W2993273994 hasRelatedWork W269475796 @default.
- W2993273994 isParatext "false" @default.
- W2993273994 isRetracted "false" @default.
- W2993273994 magId "2993273994" @default.
- W2993273994 workType "article" @default.