Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993285541> ?p ?o ?g. }
- W2993285541 endingPage "413" @default.
- W2993285541 startingPage "404" @default.
- W2993285541 abstract "Purpose To develop and evaluate a novel motion prediction method for magnetic resonance image (MRI)‐guided radiotherapy applications. This method, which we deem “image regression,” predicts future tissue motion based on a weighted combination of previously observed motion states. Motion predictions are derived from a sliding window of recent motion states which are defined by a temporal sequence of images. A key advantage of this method compared to other motion prediction methods is that its computational complexity scales weekly with the number of spatial points predicted. Applications of gating latency reduction and improvement in deformable registration‐based target tracking are demonstrated. Methods The image regression (IR) motion prediction method was developed and evaluated using 26.9 h of real‐time imaging acquired from eight healthy volunteers and 13 patients using a 0.35 T MRI‐guided radiotherapy system. Motion predictions were performed 0.25–0.33 s into the future using a weighted sum of previously observed motion states with image similarity‐derived weights. The set of previously observed motion states were continuously updated to incorporate the changes in breathing patterns. The accuracy of the predicted radiotherapy gating decision, beam‐on positive predictive value (PPV), and predicted vs ground‐truth target centroid position errors are reported. The IR technique was compared against no prediction, linear extrapolation, and an established autoregressive linear prediction algorithm. The usage of IR to initialize the deformable registration and enhance the target tracking was demonstrated in the healthy volunteer studies. Deformable registration with IR initialization was compared to the initialization performed by current clinical software: no initialization, previous image registration initialization and linear motion extrapolation initialization. Results The average IR‐predicted radiation beam gating decision accuracy was 95.8%, with a PPV of 95.7%, and median and 95th percentile centroid position errors of 0.63 and 2.08 mm, respectively. Compared to the autoregressive linear prediction method, gating accuracy was 1.15% greater, PPV was 1.61% greater, and median and 95th percentile centroid distances were 0.21 and 0.23 mm smaller. The IR‐initialized registration on average converged within 0.50 mm of the ground‐truth position in fewer than 10 iterations whereas the next best initialization method required more than 25 iterations. Conclusions Image regression motion prediction has the potential to reduce the gating latencies and improve the speed and accuracy of deformable registration‐based target tracking in MRI‐guided radiotherapy." @default.
- W2993285541 created "2019-12-13" @default.
- W2993285541 creator A5006750331 @default.
- W2993285541 creator A5029832943 @default.
- W2993285541 creator A5051265222 @default.
- W2993285541 creator A5091674984 @default.
- W2993285541 date "2019-12-25" @default.
- W2993285541 modified "2023-10-11" @default.
- W2993285541 title "An image regression motion prediction technique for MRI‐guided radiotherapy evaluated in single‐plane cine imaging" @default.
- W2993285541 cites W1997838860 @default.
- W2993285541 cites W1998300122 @default.
- W2993285541 cites W2009316899 @default.
- W2993285541 cites W2012621792 @default.
- W2993285541 cites W2027583706 @default.
- W2993285541 cites W2037225434 @default.
- W2993285541 cites W2040357326 @default.
- W2993285541 cites W2046824363 @default.
- W2993285541 cites W2052499560 @default.
- W2993285541 cites W2052617049 @default.
- W2993285541 cites W2053186076 @default.
- W2993285541 cites W2060559903 @default.
- W2993285541 cites W2061096909 @default.
- W2993285541 cites W2094265705 @default.
- W2993285541 cites W2097110160 @default.
- W2993285541 cites W2111388536 @default.
- W2993285541 cites W2133287637 @default.
- W2993285541 cites W2146414540 @default.
- W2993285541 cites W2147950119 @default.
- W2993285541 cites W2151736239 @default.
- W2993285541 cites W2300288570 @default.
- W2993285541 cites W2303560862 @default.
- W2993285541 cites W2423427695 @default.
- W2993285541 cites W2588414402 @default.
- W2993285541 cites W2594006353 @default.
- W2993285541 cites W2608324915 @default.
- W2993285541 cites W2608934082 @default.
- W2993285541 cites W2763819469 @default.
- W2993285541 cites W2794305634 @default.
- W2993285541 cites W2804945509 @default.
- W2993285541 cites W2805351090 @default.
- W2993285541 cites W2839479170 @default.
- W2993285541 cites W2905984283 @default.
- W2993285541 doi "https://doi.org/10.1002/mp.13948" @default.
- W2993285541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31808161" @default.
- W2993285541 hasPublicationYear "2019" @default.
- W2993285541 type Work @default.
- W2993285541 sameAs 2993285541 @default.
- W2993285541 citedByCount "9" @default.
- W2993285541 countsByYear W29932855412020 @default.
- W2993285541 countsByYear W29932855412021 @default.
- W2993285541 countsByYear W29932855412022 @default.
- W2993285541 countsByYear W29932855412023 @default.
- W2993285541 crossrefType "journal-article" @default.
- W2993285541 hasAuthorship W2993285541A5006750331 @default.
- W2993285541 hasAuthorship W2993285541A5029832943 @default.
- W2993285541 hasAuthorship W2993285541A5051265222 @default.
- W2993285541 hasAuthorship W2993285541A5091674984 @default.
- W2993285541 hasConcept C10161872 @default.
- W2993285541 hasConcept C102392041 @default.
- W2993285541 hasConcept C104114177 @default.
- W2993285541 hasConcept C111919701 @default.
- W2993285541 hasConcept C114466953 @default.
- W2993285541 hasConcept C115961682 @default.
- W2993285541 hasConcept C126838900 @default.
- W2993285541 hasConcept C143409427 @default.
- W2993285541 hasConcept C146599234 @default.
- W2993285541 hasConcept C146849305 @default.
- W2993285541 hasConcept C154945302 @default.
- W2993285541 hasConcept C166704113 @default.
- W2993285541 hasConcept C199360897 @default.
- W2993285541 hasConcept C2778751112 @default.
- W2993285541 hasConcept C31601959 @default.
- W2993285541 hasConcept C31972630 @default.
- W2993285541 hasConcept C33923547 @default.
- W2993285541 hasConcept C41008148 @default.
- W2993285541 hasConcept C71924100 @default.
- W2993285541 hasConcept C9267231 @default.
- W2993285541 hasConcept C95020103 @default.
- W2993285541 hasConceptScore W2993285541C10161872 @default.
- W2993285541 hasConceptScore W2993285541C102392041 @default.
- W2993285541 hasConceptScore W2993285541C104114177 @default.
- W2993285541 hasConceptScore W2993285541C111919701 @default.
- W2993285541 hasConceptScore W2993285541C114466953 @default.
- W2993285541 hasConceptScore W2993285541C115961682 @default.
- W2993285541 hasConceptScore W2993285541C126838900 @default.
- W2993285541 hasConceptScore W2993285541C143409427 @default.
- W2993285541 hasConceptScore W2993285541C146599234 @default.
- W2993285541 hasConceptScore W2993285541C146849305 @default.
- W2993285541 hasConceptScore W2993285541C154945302 @default.
- W2993285541 hasConceptScore W2993285541C166704113 @default.
- W2993285541 hasConceptScore W2993285541C199360897 @default.
- W2993285541 hasConceptScore W2993285541C2778751112 @default.
- W2993285541 hasConceptScore W2993285541C31601959 @default.
- W2993285541 hasConceptScore W2993285541C31972630 @default.
- W2993285541 hasConceptScore W2993285541C33923547 @default.
- W2993285541 hasConceptScore W2993285541C41008148 @default.
- W2993285541 hasConceptScore W2993285541C71924100 @default.
- W2993285541 hasConceptScore W2993285541C9267231 @default.