Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993382561> ?p ?o ?g. }
- W2993382561 endingPage "958" @default.
- W2993382561 startingPage "949" @default.
- W2993382561 abstract "An analytical comparison of seismic inversion with several multivariate predictive techniques is made. Statistical data reduction techniques are examined that incorporate various machine learning algorithms, such as linear regression, alternating conditional expectation regression, random forest, and neural network. Seismic and well-log data are combined to estimate petrophysical or petroelastic properties, like bulk density. Currently, spatial distribution and estimation of reservoir properties is leveraged by inverting 3D seismic data calibrated to elastic properties (V P , V S , and bulk density) obtained from well-log data. Most commercial seismic inversions are based on linear convolution, i.e., one-dimensional models that involve a simplified plane-parallel medium. However, in cases that are geophysically more complex, such as fractured and/or fluid-rich layers, the conventional straightforward prediction relationship breaks down. This is because linear convolution operators no longer adequately describe seismic wavefield propagation due to nonlinear energy absorption. Such nonlinearity is also suggested by the seismic nonstationarity phenomenon, expressed by vertical and horizontal changes in the shape of the seismic wavelet (amplitude and frequency variations). The nonlinear predictive operator, extracted by machine learning algorithms, makes it possible in certain cases to estimate petrophysical reservoir properties more accurately and with less influence of interpretational bias." @default.
- W2993382561 created "2019-12-13" @default.
- W2993382561 creator A5001163909 @default.
- W2993382561 creator A5027295946 @default.
- W2993382561 creator A5067332697 @default.
- W2993382561 creator A5069169379 @default.
- W2993382561 date "2019-12-01" @default.
- W2993382561 modified "2023-09-26" @default.
- W2993382561 title "Direct prediction of petrophysical and petroelastic reservoir properties from seismic and well-log data using nonlinear machine learning algorithms" @default.
- W2993382561 cites W1971971422 @default.
- W2993382561 cites W1989531162 @default.
- W2993382561 cites W2008590937 @default.
- W2993382561 cites W2024274875 @default.
- W2993382561 cites W2030748132 @default.
- W2993382561 cites W2091955608 @default.
- W2993382561 cites W2102070657 @default.
- W2993382561 cites W2106092743 @default.
- W2993382561 cites W2108001228 @default.
- W2993382561 cites W2144908486 @default.
- W2993382561 cites W2156744569 @default.
- W2993382561 cites W2163505942 @default.
- W2993382561 cites W2171850154 @default.
- W2993382561 cites W2193121729 @default.
- W2993382561 cites W2287041803 @default.
- W2993382561 cites W2321000585 @default.
- W2993382561 cites W2331423003 @default.
- W2993382561 cites W2333130272 @default.
- W2993382561 cites W2415720764 @default.
- W2993382561 cites W2605177576 @default.
- W2993382561 cites W2614678216 @default.
- W2993382561 cites W2748453417 @default.
- W2993382561 cites W2767093671 @default.
- W2993382561 cites W2772324322 @default.
- W2993382561 cites W2886083732 @default.
- W2993382561 cites W2899967657 @default.
- W2993382561 cites W2911964244 @default.
- W2993382561 cites W2913599456 @default.
- W2993382561 cites W2993759822 @default.
- W2993382561 cites W4231612318 @default.
- W2993382561 cites W4302310949 @default.
- W2993382561 doi "https://doi.org/10.1190/tle38120949.1" @default.
- W2993382561 hasPublicationYear "2019" @default.
- W2993382561 type Work @default.
- W2993382561 sameAs 2993382561 @default.
- W2993382561 citedByCount "11" @default.
- W2993382561 countsByYear W29933825612020 @default.
- W2993382561 countsByYear W29933825612021 @default.
- W2993382561 countsByYear W29933825612022 @default.
- W2993382561 countsByYear W29933825612023 @default.
- W2993382561 crossrefType "journal-article" @default.
- W2993382561 hasAuthorship W2993382561A5001163909 @default.
- W2993382561 hasAuthorship W2993382561A5027295946 @default.
- W2993382561 hasAuthorship W2993382561A5067332697 @default.
- W2993382561 hasAuthorship W2993382561A5069169379 @default.
- W2993382561 hasConcept C11413529 @default.
- W2993382561 hasConcept C121332964 @default.
- W2993382561 hasConcept C127313418 @default.
- W2993382561 hasConcept C154945302 @default.
- W2993382561 hasConcept C158622935 @default.
- W2993382561 hasConcept C159737794 @default.
- W2993382561 hasConcept C187320778 @default.
- W2993382561 hasConcept C2524010 @default.
- W2993382561 hasConcept C2781294565 @default.
- W2993382561 hasConcept C33923547 @default.
- W2993382561 hasConcept C39267094 @default.
- W2993382561 hasConcept C41008148 @default.
- W2993382561 hasConcept C45347329 @default.
- W2993382561 hasConcept C46293882 @default.
- W2993382561 hasConcept C47432892 @default.
- W2993382561 hasConcept C50644808 @default.
- W2993382561 hasConcept C62520636 @default.
- W2993382561 hasConcept C64370902 @default.
- W2993382561 hasConcept C6648577 @default.
- W2993382561 hasConcept C8058405 @default.
- W2993382561 hasConceptScore W2993382561C11413529 @default.
- W2993382561 hasConceptScore W2993382561C121332964 @default.
- W2993382561 hasConceptScore W2993382561C127313418 @default.
- W2993382561 hasConceptScore W2993382561C154945302 @default.
- W2993382561 hasConceptScore W2993382561C158622935 @default.
- W2993382561 hasConceptScore W2993382561C159737794 @default.
- W2993382561 hasConceptScore W2993382561C187320778 @default.
- W2993382561 hasConceptScore W2993382561C2524010 @default.
- W2993382561 hasConceptScore W2993382561C2781294565 @default.
- W2993382561 hasConceptScore W2993382561C33923547 @default.
- W2993382561 hasConceptScore W2993382561C39267094 @default.
- W2993382561 hasConceptScore W2993382561C41008148 @default.
- W2993382561 hasConceptScore W2993382561C45347329 @default.
- W2993382561 hasConceptScore W2993382561C46293882 @default.
- W2993382561 hasConceptScore W2993382561C47432892 @default.
- W2993382561 hasConceptScore W2993382561C50644808 @default.
- W2993382561 hasConceptScore W2993382561C62520636 @default.
- W2993382561 hasConceptScore W2993382561C64370902 @default.
- W2993382561 hasConceptScore W2993382561C6648577 @default.
- W2993382561 hasConceptScore W2993382561C8058405 @default.
- W2993382561 hasIssue "12" @default.
- W2993382561 hasLocation W29933825611 @default.
- W2993382561 hasOpenAccess W2993382561 @default.
- W2993382561 hasPrimaryLocation W29933825611 @default.