Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993441710> ?p ?o ?g. }
- W2993441710 endingPage "114474" @default.
- W2993441710 startingPage "114474" @default.
- W2993441710 abstract "Efficiency is one of the key problems in the design of high-throughput materials computing. In this paper, we provide a Self-Evaluation High-throughput Computing framework (SEHC). The framework introduces an automatic self-evaluation filtering mechanism, which is based on machine learning, for high-throughput computing architectures to stop unexpected materials calculation tasks in advance during high-throughput calculation. The time-consuming high-throughput computing process is disassembled into several finer-grained high-throughput Stages. Multiple high-throughput Stages with the same standard design specifications can be assembled into a Pipeline model. Combined with the public service like data storage and system monitoring, the SEHC with a “Stage-Pipeline-Framework” three-tier structure is formed. To search for diamond-like structures with higher group velocity in a space of 254 compounds, a SEHC-based prototype was implemented. The experiment result shows that this prototype achieved a significant improvement in efficiency by reducing the amount of invalid computation remarkably." @default.
- W2993441710 created "2019-12-13" @default.
- W2993441710 creator A5002328317 @default.
- W2993441710 creator A5010481978 @default.
- W2993441710 creator A5036943629 @default.
- W2993441710 creator A5040915400 @default.
- W2993441710 creator A5055886595 @default.
- W2993441710 creator A5057257016 @default.
- W2993441710 date "2020-02-01" @default.
- W2993441710 modified "2023-10-17" @default.
- W2993441710 title "SEHC: A high-throughput materials computing framework with automatic self-evaluation filtering" @default.
- W2993441710 cites W1513260206 @default.
- W2993441710 cites W1800437104 @default.
- W2993441710 cites W1854827278 @default.
- W2993441710 cites W1922832738 @default.
- W2993441710 cites W1970127494 @default.
- W2993441710 cites W1973547540 @default.
- W2993441710 cites W1975997599 @default.
- W2993441710 cites W1999640128 @default.
- W2993441710 cites W2000009216 @default.
- W2993441710 cites W2013795311 @default.
- W2993441710 cites W2030937046 @default.
- W2993441710 cites W2032842297 @default.
- W2993441710 cites W2033169180 @default.
- W2993441710 cites W2034668433 @default.
- W2993441710 cites W2036061355 @default.
- W2993441710 cites W2036113194 @default.
- W2993441710 cites W2041393814 @default.
- W2993441710 cites W2051740693 @default.
- W2993441710 cites W2051801258 @default.
- W2993441710 cites W2052663622 @default.
- W2993441710 cites W2058557544 @default.
- W2993441710 cites W2077866453 @default.
- W2993441710 cites W2079105963 @default.
- W2993441710 cites W2083222334 @default.
- W2993441710 cites W2089468765 @default.
- W2993441710 cites W2094724367 @default.
- W2993441710 cites W2098432400 @default.
- W2993441710 cites W2104489082 @default.
- W2993441710 cites W2104757784 @default.
- W2993441710 cites W2109522465 @default.
- W2993441710 cites W2112845989 @default.
- W2993441710 cites W2117363206 @default.
- W2993441710 cites W2128873947 @default.
- W2993441710 cites W2134329894 @default.
- W2993441710 cites W2138178898 @default.
- W2993441710 cites W2146096861 @default.
- W2993441710 cites W2158698691 @default.
- W2993441710 cites W2159786140 @default.
- W2993441710 cites W2347129741 @default.
- W2993441710 cites W2460314483 @default.
- W2993441710 cites W2885789139 @default.
- W2993441710 cites W2963657244 @default.
- W2993441710 doi "https://doi.org/10.1016/j.mseb.2019.114474" @default.
- W2993441710 hasPublicationYear "2020" @default.
- W2993441710 type Work @default.
- W2993441710 sameAs 2993441710 @default.
- W2993441710 citedByCount "6" @default.
- W2993441710 countsByYear W29934417102020 @default.
- W2993441710 countsByYear W29934417102021 @default.
- W2993441710 countsByYear W29934417102022 @default.
- W2993441710 countsByYear W29934417102023 @default.
- W2993441710 crossrefType "journal-article" @default.
- W2993441710 hasAuthorship W2993441710A5002328317 @default.
- W2993441710 hasAuthorship W2993441710A5010481978 @default.
- W2993441710 hasAuthorship W2993441710A5036943629 @default.
- W2993441710 hasAuthorship W2993441710A5040915400 @default.
- W2993441710 hasAuthorship W2993441710A5055886595 @default.
- W2993441710 hasAuthorship W2993441710A5057257016 @default.
- W2993441710 hasConcept C111919701 @default.
- W2993441710 hasConcept C11413529 @default.
- W2993441710 hasConcept C118524514 @default.
- W2993441710 hasConcept C120314980 @default.
- W2993441710 hasConcept C157764524 @default.
- W2993441710 hasConcept C173608175 @default.
- W2993441710 hasConcept C26517878 @default.
- W2993441710 hasConcept C41008148 @default.
- W2993441710 hasConcept C43521106 @default.
- W2993441710 hasConcept C45374587 @default.
- W2993441710 hasConcept C555944384 @default.
- W2993441710 hasConcept C83283714 @default.
- W2993441710 hasConcept C98045186 @default.
- W2993441710 hasConceptScore W2993441710C111919701 @default.
- W2993441710 hasConceptScore W2993441710C11413529 @default.
- W2993441710 hasConceptScore W2993441710C118524514 @default.
- W2993441710 hasConceptScore W2993441710C120314980 @default.
- W2993441710 hasConceptScore W2993441710C157764524 @default.
- W2993441710 hasConceptScore W2993441710C173608175 @default.
- W2993441710 hasConceptScore W2993441710C26517878 @default.
- W2993441710 hasConceptScore W2993441710C41008148 @default.
- W2993441710 hasConceptScore W2993441710C43521106 @default.
- W2993441710 hasConceptScore W2993441710C45374587 @default.
- W2993441710 hasConceptScore W2993441710C555944384 @default.
- W2993441710 hasConceptScore W2993441710C83283714 @default.
- W2993441710 hasConceptScore W2993441710C98045186 @default.
- W2993441710 hasFunder F4320321001 @default.
- W2993441710 hasFunder F4320321885 @default.
- W2993441710 hasLocation W29934417101 @default.