Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993584326> ?p ?o ?g. }
- W2993584326 abstract "Abstract Background It is known that γ radiation is rapidly triggering in cells and in the surrounding medium a hydrogen peroxide burst through water radiolysis, which may have early and late consequence on the viability and functions of irradiated cells. Investigations on monocytes and macrophages are of utmost importance for assessing radiation risks, considering that they are highly responsive to danger/damage signals, are master regulators of the immune response and actively contribute to repair processes in tissues damaged by radiation. Aim In the present study we investigated the expression changes of redox genes in human SC monocytes exposed in vitro to γ rays, aiming to identify delayed disturbances of the redox gene network in irradiated cells. Methods SC monocytes were exposed to γ radiation in the dose range of 1–5 Gy, at various dose rates (1.6 Gy/h, 4 Gy/h and 10 Gy/h). Cells were further cultivated and were analyzed at various time points after irradiation (24 h and 48 h) regarding cell viability and the expression profile of 84 redox genes critically involved in oxidative stress and antioxidant responses, addressing ROS metabolism, oxidative stress responsive genes, antioxidant genes and pathway activity signature genes. Results Over-expression of particular genes encoding various members of the NADPH oxidase family or myeloperoxidase evidenced an increased potential of irradiated cells to generate reactive oxygen or nitrogen species, especially superoxide anion. Alternatively, up-regulation of genes encoding antioxidant molecules indirectly proved that an increased oxidative activity occurred in irradiated monocytes. Redox-mediated cellular deregulation was evidenced by the over-expression of the BNIP3 gene which is involved in cell death by apoptosis or autophagy, and was complemented by the up-regulation of the DUSP1 gene involved in cell cycle arrest and functional silencing of monocytes. At lower doses and dose rates, an enhanced molecular fingerprint of antioxidant responses mediated by the cytoprotective transcription factor NRF2 was found, albeit not being able to avoid the observed reduction of viable cells in irradiated cultures. Moreover, only a low transcriptional activity of NRF2 was registered at higher doses which probably inflicted profound oxidative damages that compromised critical cellular defense mechanisms. Conclusion Pathway-focused analysis of redox gene expression allowed us to highlight delayed oxidative alterations in monocytes exposed in vitro to γ rays, indicating a persistent oxidative activity after irradiation. Moreover, we emphasized the necessity to boost the endogenous antioxidant system in normal cells exposed to higher doses of γ rays, in order to protect them against the deleterious effects of radiation. A therapeutic option might be the pharmacological activation of the transcription factor NRF2 which can rapidly react to even small increases in intracellular oxidants, and regulates the expression of many antioxidant and cytoprotective genes." @default.
- W2993584326 created "2019-12-13" @default.
- W2993584326 creator A5003929660 @default.
- W2993584326 creator A5014860872 @default.
- W2993584326 creator A5026807835 @default.
- W2993584326 creator A5028253166 @default.
- W2993584326 creator A5052912870 @default.
- W2993584326 creator A5063198978 @default.
- W2993584326 date "2020-05-01" @default.
- W2993584326 modified "2023-09-23" @default.
- W2993584326 title "The expression profile of redox genes in human monocytes exposed in vitro to γ radiation" @default.
- W2993584326 cites W1563715672 @default.
- W2993584326 cites W1595997916 @default.
- W2993584326 cites W1869278038 @default.
- W2993584326 cites W1873190193 @default.
- W2993584326 cites W1891967301 @default.
- W2993584326 cites W1923917571 @default.
- W2993584326 cites W1966248579 @default.
- W2993584326 cites W1971315333 @default.
- W2993584326 cites W1976599392 @default.
- W2993584326 cites W1977969992 @default.
- W2993584326 cites W1979814743 @default.
- W2993584326 cites W1991804264 @default.
- W2993584326 cites W1992399301 @default.
- W2993584326 cites W1993058298 @default.
- W2993584326 cites W1998010000 @default.
- W2993584326 cites W2006260865 @default.
- W2993584326 cites W2052216327 @default.
- W2993584326 cites W2053551121 @default.
- W2993584326 cites W2062845561 @default.
- W2993584326 cites W2068663804 @default.
- W2993584326 cites W2071935311 @default.
- W2993584326 cites W2074834020 @default.
- W2993584326 cites W2076833412 @default.
- W2993584326 cites W2083899916 @default.
- W2993584326 cites W2090286680 @default.
- W2993584326 cites W2090666609 @default.
- W2993584326 cites W2106453911 @default.
- W2993584326 cites W2108205507 @default.
- W2993584326 cites W2117800935 @default.
- W2993584326 cites W2121677184 @default.
- W2993584326 cites W2158479120 @default.
- W2993584326 cites W2171465583 @default.
- W2993584326 cites W2324157184 @default.
- W2993584326 cites W2338130275 @default.
- W2993584326 cites W2340338776 @default.
- W2993584326 cites W2407926544 @default.
- W2993584326 cites W2413936070 @default.
- W2993584326 cites W2417795136 @default.
- W2993584326 cites W2491457635 @default.
- W2993584326 cites W2529806390 @default.
- W2993584326 cites W2561943186 @default.
- W2993584326 cites W2739146923 @default.
- W2993584326 cites W2756319332 @default.
- W2993584326 cites W2783982610 @default.
- W2993584326 cites W2788613589 @default.
- W2993584326 cites W2806560179 @default.
- W2993584326 cites W2811034983 @default.
- W2993584326 cites W2889605858 @default.
- W2993584326 cites W2901675864 @default.
- W2993584326 cites W2904366212 @default.
- W2993584326 doi "https://doi.org/10.1016/j.radphyschem.2019.108634" @default.
- W2993584326 hasPublicationYear "2020" @default.
- W2993584326 type Work @default.
- W2993584326 sameAs 2993584326 @default.
- W2993584326 citedByCount "2" @default.
- W2993584326 countsByYear W29935843262020 @default.
- W2993584326 crossrefType "journal-article" @default.
- W2993584326 hasAuthorship W2993584326A5003929660 @default.
- W2993584326 hasAuthorship W2993584326A5014860872 @default.
- W2993584326 hasAuthorship W2993584326A5026807835 @default.
- W2993584326 hasAuthorship W2993584326A5028253166 @default.
- W2993584326 hasAuthorship W2993584326A5052912870 @default.
- W2993584326 hasAuthorship W2993584326A5063198978 @default.
- W2993584326 hasConcept C104317684 @default.
- W2993584326 hasConcept C153911025 @default.
- W2993584326 hasConcept C181199279 @default.
- W2993584326 hasConcept C185592680 @default.
- W2993584326 hasConcept C202751555 @default.
- W2993584326 hasConcept C2776151105 @default.
- W2993584326 hasConcept C2778004101 @default.
- W2993584326 hasConcept C2779719074 @default.
- W2993584326 hasConcept C2780795997 @default.
- W2993584326 hasConcept C48349386 @default.
- W2993584326 hasConcept C53227056 @default.
- W2993584326 hasConcept C533411734 @default.
- W2993584326 hasConcept C55493867 @default.
- W2993584326 hasConcept C86803240 @default.
- W2993584326 hasConcept C95444343 @default.
- W2993584326 hasConceptScore W2993584326C104317684 @default.
- W2993584326 hasConceptScore W2993584326C153911025 @default.
- W2993584326 hasConceptScore W2993584326C181199279 @default.
- W2993584326 hasConceptScore W2993584326C185592680 @default.
- W2993584326 hasConceptScore W2993584326C202751555 @default.
- W2993584326 hasConceptScore W2993584326C2776151105 @default.
- W2993584326 hasConceptScore W2993584326C2778004101 @default.
- W2993584326 hasConceptScore W2993584326C2779719074 @default.
- W2993584326 hasConceptScore W2993584326C2780795997 @default.
- W2993584326 hasConceptScore W2993584326C48349386 @default.
- W2993584326 hasConceptScore W2993584326C53227056 @default.