Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993669828> ?p ?o ?g. }
- W2993669828 endingPage "2068" @default.
- W2993669828 startingPage "2055" @default.
- W2993669828 abstract "Research to predict epileptic seizures has been mainly focused on the analysis of electroencephalography (EEG) signals; however, recent research efforts have encouraged the use of a relatively new optical signal modality, called functional Near-Infrared Spectroscopy (fNIRS). In fNIRS, near-infrared light is injected into the scalp and the intensity of the reflected light is registered in optodes. Light absorption in hemoglobin depends on the level of blood oxygenation, which is related to brain activity. In this technique, two parameters are measured at each optode, the relative level of oxygenated hemoglobin (HbO) and the relative level of deoxygenated hemoglobin (HbR). In this work we investigated the feasibility of predicting epileptic seizures, using either fNIRS, EEG, or a combination of both signals. In one set of experiments, different implementations for epileptic seizure prediction are tested by using (1) different combinations of electrical and optical signals (EEG, HbO, HbR, EEG+HbO, EEG+HbR, HbO+HbR, EEG+HbO+HbR) and (2) two different classifiers, (Support Vector Machine - SVM and Multi-Layer Perceptron - MLP). In the second set of experiments, seizures are predicted within a five-minute window that is moved up to 15 minutes before the start of the epileptic seizure. By computing the Positive Predictive Value (PPV) and the accuracy, it is demonstrated that fNIRS-based epileptic prediction outperforms EEG-based epileptic prediction. By using optical signals and the SVM classifier, a PPV greater than 99% and an accuracy of 100% were obtained. PPV values of 100% are also obtained when seizures are predicted up to 15 minutes in advance. Furthermore, Kernel Discriminant Analysis (KDA) is used to demonstrate that the highest separability among the classes, corresponding to different epileptic signal phases (pre-ictal, ictal, and inter-ictal), is achieved when fNIRS recordings are used as features for prediction. Finally, fNIRS-based epileptic seizure prediction is tested with Random Chance classifiers. In this study, we showed that fNIRS signals are an effective tool to predict epileptic seizures, even without the use of EEG signals, which are the current standard for seizure prediction." @default.
- W2993669828 created "2019-12-13" @default.
- W2993669828 creator A5004240022 @default.
- W2993669828 creator A5067711217 @default.
- W2993669828 creator A5072923919 @default.
- W2993669828 creator A5075040052 @default.
- W2993669828 creator A5077229663 @default.
- W2993669828 creator A5083301289 @default.
- W2993669828 creator A5084500791 @default.
- W2993669828 date "2020-02-06" @default.
- W2993669828 modified "2023-10-03" @default.
- W2993669828 title "Prediction of epileptic seizures using fNIRS and machine learning" @default.
- W2993669828 cites W1483212964 @default.
- W2993669828 cites W1966217227 @default.
- W2993669828 cites W1971981854 @default.
- W2993669828 cites W1974347565 @default.
- W2993669828 cites W1990166508 @default.
- W2993669828 cites W1999340799 @default.
- W2993669828 cites W2002994039 @default.
- W2993669828 cites W2004718447 @default.
- W2993669828 cites W2005002647 @default.
- W2993669828 cites W2006319238 @default.
- W2993669828 cites W2017092028 @default.
- W2993669828 cites W2018077245 @default.
- W2993669828 cites W2019448024 @default.
- W2993669828 cites W2019664149 @default.
- W2993669828 cites W2027927824 @default.
- W2993669828 cites W2035849673 @default.
- W2993669828 cites W2035987281 @default.
- W2993669828 cites W2041829367 @default.
- W2993669828 cites W2045394053 @default.
- W2993669828 cites W2053744708 @default.
- W2993669828 cites W2056870272 @default.
- W2993669828 cites W2056941957 @default.
- W2993669828 cites W2057723575 @default.
- W2993669828 cites W2059394600 @default.
- W2993669828 cites W2066284982 @default.
- W2993669828 cites W2077746856 @default.
- W2993669828 cites W2080966422 @default.
- W2993669828 cites W2091211352 @default.
- W2993669828 cites W2092890379 @default.
- W2993669828 cites W2112686332 @default.
- W2993669828 cites W2133082272 @default.
- W2993669828 cites W2138160374 @default.
- W2993669828 cites W2168963208 @default.
- W2993669828 cites W2179456202 @default.
- W2993669828 cites W2284031736 @default.
- W2993669828 cites W2759483166 @default.
- W2993669828 cites W2804824909 @default.
- W2993669828 cites W2905707672 @default.
- W2993669828 cites W2914193281 @default.
- W2993669828 cites W2914359968 @default.
- W2993669828 cites W2924072309 @default.
- W2993669828 cites W2943507717 @default.
- W2993669828 cites W2960026766 @default.
- W2993669828 cites W29918989 @default.
- W2993669828 doi "https://doi.org/10.3233/jifs-190738" @default.
- W2993669828 hasPublicationYear "2020" @default.
- W2993669828 type Work @default.
- W2993669828 sameAs 2993669828 @default.
- W2993669828 citedByCount "4" @default.
- W2993669828 countsByYear W29936698282021 @default.
- W2993669828 countsByYear W29936698282022 @default.
- W2993669828 countsByYear W29936698282023 @default.
- W2993669828 crossrefType "journal-article" @default.
- W2993669828 hasAuthorship W2993669828A5004240022 @default.
- W2993669828 hasAuthorship W2993669828A5067711217 @default.
- W2993669828 hasAuthorship W2993669828A5072923919 @default.
- W2993669828 hasAuthorship W2993669828A5075040052 @default.
- W2993669828 hasAuthorship W2993669828A5077229663 @default.
- W2993669828 hasAuthorship W2993669828A5083301289 @default.
- W2993669828 hasAuthorship W2993669828A5084500791 @default.
- W2993669828 hasConcept C12267149 @default.
- W2993669828 hasConcept C130796691 @default.
- W2993669828 hasConcept C153180895 @default.
- W2993669828 hasConcept C154945302 @default.
- W2993669828 hasConcept C15744967 @default.
- W2993669828 hasConcept C169760540 @default.
- W2993669828 hasConcept C169900460 @default.
- W2993669828 hasConcept C2778186239 @default.
- W2993669828 hasConcept C2779334592 @default.
- W2993669828 hasConcept C2781195155 @default.
- W2993669828 hasConcept C41008148 @default.
- W2993669828 hasConcept C522805319 @default.
- W2993669828 hasConceptScore W2993669828C12267149 @default.
- W2993669828 hasConceptScore W2993669828C130796691 @default.
- W2993669828 hasConceptScore W2993669828C153180895 @default.
- W2993669828 hasConceptScore W2993669828C154945302 @default.
- W2993669828 hasConceptScore W2993669828C15744967 @default.
- W2993669828 hasConceptScore W2993669828C169760540 @default.
- W2993669828 hasConceptScore W2993669828C169900460 @default.
- W2993669828 hasConceptScore W2993669828C2778186239 @default.
- W2993669828 hasConceptScore W2993669828C2779334592 @default.
- W2993669828 hasConceptScore W2993669828C2781195155 @default.
- W2993669828 hasConceptScore W2993669828C41008148 @default.
- W2993669828 hasConceptScore W2993669828C522805319 @default.
- W2993669828 hasIssue "2" @default.
- W2993669828 hasLocation W29936698281 @default.