Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993709116> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2993709116 abstract "Venue discovery using real-world multimedia data has not been investigated thoroughly. We are referring to business and travel locations as venues in this study and aim to improve the efficiency of venue discovery by hashing. Most existing supervised cross-modal hashing methods map data in different modalities to Hamming space, where the semantic information is exploited to supervise data of different modalities during the training stage. However, previous works neglect pairwise similarity between data in different modalities, which lead to degraded performance of hashing function learning. To address this issue, we propose a supervised Generative Adversarial Cross-modal Hashing method by Transferring Pairwise Similarities (SGACH-TPS). This work has three significant contributions: i) we propose a model for making efficient venue discovery, ii) the supervised generative adversarial network can construct a hash function to map multimodal data to a common hamming space. iii) a simple transfer training strategy for the adversarial network is suggested to supervise data in different modalities where the pairwise similarity is transferred to the fine-tuning stage of training. Evaluation on the new WikiVenue dataset confirms the superiority of the proposed method." @default.
- W2993709116 created "2019-12-13" @default.
- W2993709116 creator A5003692270 @default.
- W2993709116 creator A5022694536 @default.
- W2993709116 creator A5033599028 @default.
- W2993709116 creator A5079357056 @default.
- W2993709116 date "2019-09-01" @default.
- W2993709116 modified "2023-09-23" @default.
- W2993709116 title "Supervised Generative Adversarial Cross-Modal Hashing by Transferring Pairwise Similarities for Venue Discovery" @default.
- W2993709116 cites W1946093182 @default.
- W2993709116 cites W1970055505 @default.
- W2993709116 cites W1979644923 @default.
- W2993709116 cites W1987488988 @default.
- W2993709116 cites W2049993534 @default.
- W2993709116 cites W2053509320 @default.
- W2993709116 cites W2086958058 @default.
- W2993709116 cites W2100235303 @default.
- W2993709116 cites W2103163130 @default.
- W2993709116 cites W2116777898 @default.
- W2993709116 cites W2134446283 @default.
- W2993709116 cites W2365919995 @default.
- W2993709116 cites W2493727926 @default.
- W2993709116 cites W2512032049 @default.
- W2993709116 cites W2572826332 @default.
- W2993709116 cites W2750725664 @default.
- W2993709116 cites W2765440071 @default.
- W2993709116 cites W2907096257 @default.
- W2993709116 cites W2953037339 @default.
- W2993709116 cites W2962805368 @default.
- W2993709116 cites W2963187862 @default.
- W2993709116 cites W2963288100 @default.
- W2993709116 cites W2963435138 @default.
- W2993709116 doi "https://doi.org/10.1109/bigmm.2019.000-2" @default.
- W2993709116 hasPublicationYear "2019" @default.
- W2993709116 type Work @default.
- W2993709116 sameAs 2993709116 @default.
- W2993709116 citedByCount "1" @default.
- W2993709116 countsByYear W29937091162020 @default.
- W2993709116 crossrefType "proceedings-article" @default.
- W2993709116 hasAuthorship W2993709116A5003692270 @default.
- W2993709116 hasAuthorship W2993709116A5022694536 @default.
- W2993709116 hasAuthorship W2993709116A5033599028 @default.
- W2993709116 hasAuthorship W2993709116A5079357056 @default.
- W2993709116 hasConcept C119857082 @default.
- W2993709116 hasConcept C154945302 @default.
- W2993709116 hasConcept C184898388 @default.
- W2993709116 hasConcept C185592680 @default.
- W2993709116 hasConcept C188027245 @default.
- W2993709116 hasConcept C37736160 @default.
- W2993709116 hasConcept C38652104 @default.
- W2993709116 hasConcept C39890363 @default.
- W2993709116 hasConcept C41008148 @default.
- W2993709116 hasConcept C71139939 @default.
- W2993709116 hasConcept C99138194 @default.
- W2993709116 hasConceptScore W2993709116C119857082 @default.
- W2993709116 hasConceptScore W2993709116C154945302 @default.
- W2993709116 hasConceptScore W2993709116C184898388 @default.
- W2993709116 hasConceptScore W2993709116C185592680 @default.
- W2993709116 hasConceptScore W2993709116C188027245 @default.
- W2993709116 hasConceptScore W2993709116C37736160 @default.
- W2993709116 hasConceptScore W2993709116C38652104 @default.
- W2993709116 hasConceptScore W2993709116C39890363 @default.
- W2993709116 hasConceptScore W2993709116C41008148 @default.
- W2993709116 hasConceptScore W2993709116C71139939 @default.
- W2993709116 hasConceptScore W2993709116C99138194 @default.
- W2993709116 hasLocation W29937091161 @default.
- W2993709116 hasOpenAccess W2993709116 @default.
- W2993709116 hasPrimaryLocation W29937091161 @default.
- W2993709116 hasRelatedWork W2554506842 @default.
- W2993709116 hasRelatedWork W2608338293 @default.
- W2993709116 hasRelatedWork W2949399848 @default.
- W2993709116 hasRelatedWork W2962896155 @default.
- W2993709116 hasRelatedWork W2982324875 @default.
- W2993709116 hasRelatedWork W3007138654 @default.
- W2993709116 hasRelatedWork W3009460750 @default.
- W2993709116 hasRelatedWork W3135177191 @default.
- W2993709116 hasRelatedWork W3156291593 @default.
- W2993709116 hasRelatedWork W3205696406 @default.
- W2993709116 isParatext "false" @default.
- W2993709116 isRetracted "false" @default.
- W2993709116 magId "2993709116" @default.
- W2993709116 workType "article" @default.