Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993829250> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2993829250 abstract "Security auditing allows cloud tenants to verify the compliance of cloud infrastructure with respect to desirable security properties, e.g., whether a tenant’s virtual network is properly isolated from other tenants’ networks. However, the input to the auditing task, such as the detailed topology of the underlying cloud infrastructure, typically contains sensitive information which a cloud provider may be reluctant to hand over to a third party auditor. Additionally, auditing results intended for one tenant may inadvertently reveal private information about other tenants, e.g., another tenant’s VM is reachable due to a misconfiguration. How to anonymize both the input data and the auditing results in order to prevent such information leakage is a novel challenge that has received little attention. Directly applying most of the existing anonymization techniques to such a context would either lead to insufficient protection or render the data unsuitable for auditing. In this article, we propose SegGuard , a novel anonymization approach that prevents cross-tenant information leakage through per-tenant encryption, and prevents information leakage to auditors through hiding real input segments among fake ones; in addition, applying property-preserving encryption in an innovative way enables SegGuard to preserve the data utility for auditing while mitigating semantic attacks. We implement SegGuard based on OpenStack, and evaluate its effectiveness and overhead using both synthetic and real data. Our experimental results demonstrate that SegGuard can reduce the information leakage to a negligible level (e.g., less than 1 percent for an adversary with 50 percent pre-knowledge) with a practical response time (e.g., 62 seconds to anonymize a cloud infrastructure with 25,000 virtual machines)." @default.
- W2993829250 created "2019-12-13" @default.
- W2993829250 creator A5013360015 @default.
- W2993829250 creator A5020688490 @default.
- W2993829250 creator A5028605138 @default.
- W2993829250 creator A5040147297 @default.
- W2993829250 creator A5064023616 @default.
- W2993829250 creator A5076389456 @default.
- W2993829250 creator A5077892893 @default.
- W2993829250 date "2021-01-01" @default.
- W2993829250 modified "2023-09-24" @default.
- W2993829250 title "SegGuard: Segmentation-based Anonymization of Network Data in Clouds for Privacy-Preserving Security Auditing" @default.
- W2993829250 cites W1249296113 @default.
- W2993829250 cites W1449038650 @default.
- W2993829250 cites W1531756074 @default.
- W2993829250 cites W1556212265 @default.
- W2993829250 cites W1556683487 @default.
- W2993829250 cites W158224344 @default.
- W2993829250 cites W1675033504 @default.
- W2993829250 cites W168797581 @default.
- W2993829250 cites W2021238570 @default.
- W2993829250 cites W2031738616 @default.
- W2993829250 cites W2042448840 @default.
- W2993829250 cites W2043061568 @default.
- W2993829250 cites W2043501224 @default.
- W2993829250 cites W2046213875 @default.
- W2993829250 cites W2074388704 @default.
- W2993829250 cites W2088492763 @default.
- W2993829250 cites W2106295659 @default.
- W2993829250 cites W2107633422 @default.
- W2993829250 cites W2113884175 @default.
- W2993829250 cites W2125858711 @default.
- W2993829250 cites W2135359801 @default.
- W2993829250 cites W2139609292 @default.
- W2993829250 cites W2147215426 @default.
- W2993829250 cites W2155268106 @default.
- W2993829250 cites W2173213060 @default.
- W2993829250 cites W2188073520 @default.
- W2993829250 cites W2284032370 @default.
- W2993829250 cites W2295261975 @default.
- W2993829250 cites W2341865729 @default.
- W2993829250 cites W2588300318 @default.
- W2993829250 cites W2613035487 @default.
- W2993829250 cites W64025215 @default.
- W2993829250 doi "https://doi.org/10.1109/tdsc.2019.2957488" @default.
- W2993829250 hasPublicationYear "2021" @default.
- W2993829250 type Work @default.
- W2993829250 sameAs 2993829250 @default.
- W2993829250 citedByCount "3" @default.
- W2993829250 countsByYear W29938292502020 @default.
- W2993829250 countsByYear W29938292502022 @default.
- W2993829250 crossrefType "journal-article" @default.
- W2993829250 hasAuthorship W2993829250A5013360015 @default.
- W2993829250 hasAuthorship W2993829250A5020688490 @default.
- W2993829250 hasAuthorship W2993829250A5028605138 @default.
- W2993829250 hasAuthorship W2993829250A5040147297 @default.
- W2993829250 hasAuthorship W2993829250A5064023616 @default.
- W2993829250 hasAuthorship W2993829250A5076389456 @default.
- W2993829250 hasAuthorship W2993829250A5077892893 @default.
- W2993829250 hasConcept C111919701 @default.
- W2993829250 hasConcept C121955636 @default.
- W2993829250 hasConcept C137822555 @default.
- W2993829250 hasConcept C144133560 @default.
- W2993829250 hasConcept C148730421 @default.
- W2993829250 hasConcept C199521495 @default.
- W2993829250 hasConcept C2779201187 @default.
- W2993829250 hasConcept C38652104 @default.
- W2993829250 hasConcept C41008148 @default.
- W2993829250 hasConcept C41065033 @default.
- W2993829250 hasConcept C79974875 @default.
- W2993829250 hasConceptScore W2993829250C111919701 @default.
- W2993829250 hasConceptScore W2993829250C121955636 @default.
- W2993829250 hasConceptScore W2993829250C137822555 @default.
- W2993829250 hasConceptScore W2993829250C144133560 @default.
- W2993829250 hasConceptScore W2993829250C148730421 @default.
- W2993829250 hasConceptScore W2993829250C199521495 @default.
- W2993829250 hasConceptScore W2993829250C2779201187 @default.
- W2993829250 hasConceptScore W2993829250C38652104 @default.
- W2993829250 hasConceptScore W2993829250C41008148 @default.
- W2993829250 hasConceptScore W2993829250C41065033 @default.
- W2993829250 hasConceptScore W2993829250C79974875 @default.
- W2993829250 hasFunder F4320334593 @default.
- W2993829250 hasLocation W29938292501 @default.
- W2993829250 hasOpenAccess W2993829250 @default.
- W2993829250 hasPrimaryLocation W29938292501 @default.
- W2993829250 hasRelatedWork W12963290 @default.
- W2993829250 hasRelatedWork W13198473 @default.
- W2993829250 hasRelatedWork W2466218 @default.
- W2993829250 hasRelatedWork W2995805 @default.
- W2993829250 hasRelatedWork W6851591 @default.
- W2993829250 hasRelatedWork W7485291 @default.
- W2993829250 hasRelatedWork W8677904 @default.
- W2993829250 hasRelatedWork W8752188 @default.
- W2993829250 hasRelatedWork W909266 @default.
- W2993829250 hasRelatedWork W11085978 @default.
- W2993829250 isParatext "false" @default.
- W2993829250 isRetracted "false" @default.
- W2993829250 magId "2993829250" @default.
- W2993829250 workType "article" @default.