Matches in SemOpenAlex for { <https://semopenalex.org/work/W2993896711> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2993896711 endingPage "455" @default.
- W2993896711 startingPage "430" @default.
- W2993896711 abstract "There is a tight relation between the geometry of a directed graph and the algebraic structure of a Leavitt path algebra associated to it. In this note, we show a similar connection between the geometry of the graph and the structure of a certain monoid associated to it. This monoid is isomorphic to the positive cone of the graded K0-group of the Leavitt path algebra which is naturally equipped with a Z-action. As an example, we show that a graph has a cycle without an exit if and only if the monoid has a periodic element. Consequently a graph has Condition (L) if and only if the group Z acts freely on the monoid. We go on to show that the algebraic structure of Leavitt path algebras (such as simplicity, purely infinite simplicity, or the lattice of ideals) can be described completely via this monoid. Therefore an isomorphism between the monoids (or graded K0's) of two Leavitt path algebras implies that the algebras have similar algebraic structures. These all bolster the claim that the graded Grothendieck group could be a sought-after complete invariant for the classification of Leavitt path algebras." @default.
- W2993896711 created "2019-12-13" @default.
- W2993896711 creator A5065745514 @default.
- W2993896711 creator A5088812206 @default.
- W2993896711 date "2020-04-01" @default.
- W2993896711 modified "2023-09-29" @default.
- W2993896711 title "The talented monoid of a Leavitt path algebra" @default.
- W2993896711 cites W1995683503 @default.
- W2993896711 cites W2002610989 @default.
- W2993896711 cites W2020368396 @default.
- W2993896711 cites W2100943313 @default.
- W2993896711 cites W2157417386 @default.
- W2993896711 cites W2607460876 @default.
- W2993896711 cites W2963382140 @default.
- W2993896711 cites W2963635899 @default.
- W2993896711 cites W2964320620 @default.
- W2993896711 doi "https://doi.org/10.1016/j.jalgebra.2019.11.033" @default.
- W2993896711 hasPublicationYear "2020" @default.
- W2993896711 type Work @default.
- W2993896711 sameAs 2993896711 @default.
- W2993896711 citedByCount "11" @default.
- W2993896711 countsByYear W29938967112020 @default.
- W2993896711 countsByYear W29938967112021 @default.
- W2993896711 countsByYear W29938967112022 @default.
- W2993896711 countsByYear W29938967112023 @default.
- W2993896711 crossrefType "journal-article" @default.
- W2993896711 hasAuthorship W2993896711A5065745514 @default.
- W2993896711 hasAuthorship W2993896711A5088812206 @default.
- W2993896711 hasBestOaLocation W29938967112 @default.
- W2993896711 hasConcept C114614502 @default.
- W2993896711 hasConcept C115624301 @default.
- W2993896711 hasConcept C119903167 @default.
- W2993896711 hasConcept C121332964 @default.
- W2993896711 hasConcept C122022638 @default.
- W2993896711 hasConcept C132525143 @default.
- W2993896711 hasConcept C136170076 @default.
- W2993896711 hasConcept C149685015 @default.
- W2993896711 hasConcept C182419690 @default.
- W2993896711 hasConcept C185592680 @default.
- W2993896711 hasConcept C199360897 @default.
- W2993896711 hasConcept C202444582 @default.
- W2993896711 hasConcept C203436722 @default.
- W2993896711 hasConcept C206901836 @default.
- W2993896711 hasConcept C24890656 @default.
- W2993896711 hasConcept C2777735758 @default.
- W2993896711 hasConcept C2781204021 @default.
- W2993896711 hasConcept C33923547 @default.
- W2993896711 hasConcept C41008148 @default.
- W2993896711 hasConcept C8010536 @default.
- W2993896711 hasConceptScore W2993896711C114614502 @default.
- W2993896711 hasConceptScore W2993896711C115624301 @default.
- W2993896711 hasConceptScore W2993896711C119903167 @default.
- W2993896711 hasConceptScore W2993896711C121332964 @default.
- W2993896711 hasConceptScore W2993896711C122022638 @default.
- W2993896711 hasConceptScore W2993896711C132525143 @default.
- W2993896711 hasConceptScore W2993896711C136170076 @default.
- W2993896711 hasConceptScore W2993896711C149685015 @default.
- W2993896711 hasConceptScore W2993896711C182419690 @default.
- W2993896711 hasConceptScore W2993896711C185592680 @default.
- W2993896711 hasConceptScore W2993896711C199360897 @default.
- W2993896711 hasConceptScore W2993896711C202444582 @default.
- W2993896711 hasConceptScore W2993896711C203436722 @default.
- W2993896711 hasConceptScore W2993896711C206901836 @default.
- W2993896711 hasConceptScore W2993896711C24890656 @default.
- W2993896711 hasConceptScore W2993896711C2777735758 @default.
- W2993896711 hasConceptScore W2993896711C2781204021 @default.
- W2993896711 hasConceptScore W2993896711C33923547 @default.
- W2993896711 hasConceptScore W2993896711C41008148 @default.
- W2993896711 hasConceptScore W2993896711C8010536 @default.
- W2993896711 hasFunder F4320334704 @default.
- W2993896711 hasLocation W29938967111 @default.
- W2993896711 hasLocation W29938967112 @default.
- W2993896711 hasOpenAccess W2993896711 @default.
- W2993896711 hasPrimaryLocation W29938967111 @default.
- W2993896711 hasRelatedWork W1564399568 @default.
- W2993896711 hasRelatedWork W1986445962 @default.
- W2993896711 hasRelatedWork W2013946339 @default.
- W2993896711 hasRelatedWork W2043808649 @default.
- W2993896711 hasRelatedWork W2796196437 @default.
- W2993896711 hasRelatedWork W2922761039 @default.
- W2993896711 hasRelatedWork W2993896711 @default.
- W2993896711 hasRelatedWork W4288286263 @default.
- W2993896711 hasRelatedWork W51936586 @default.
- W2993896711 hasRelatedWork W4283782105 @default.
- W2993896711 hasVolume "547" @default.
- W2993896711 isParatext "false" @default.
- W2993896711 isRetracted "false" @default.
- W2993896711 magId "2993896711" @default.
- W2993896711 workType "article" @default.