Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994004908> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2994004908 endingPage "486" @default.
- W2994004908 startingPage "461" @default.
- W2994004908 abstract "Abstract One of the beneficial properties of the discontinuous Galerkin method is the accurate wave propagation properties. That is, the semi-discrete error has dissipation errors of order $$2k+1$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> ( $$le Ch^{2k+1}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mo>≤</mml:mo><mml:mi>C</mml:mi><mml:msup><mml:mi>h</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> ) and order $$2k+2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:math> for dispersion ( $$le Ch^{2k+2}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mo>≤</mml:mo><mml:mi>C</mml:mi><mml:msup><mml:mi>h</mml:mi><mml:mrow><mml:mn>2</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> ). Previous studies have concentrated on the order of accuracy, and neglected the important role that the error constant, C , plays in these estimates. In this article, we show the important role of the error constant in the dispersion and dissipation error for discontinuous Galerkin approximation of polynomial degree k , where $$k=0,1,2,3.$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>3</mml:mn><mml:mo>.</mml:mo></mml:mrow></mml:math> This gives insight into why one may want a more centred flux for a piecewise constant or quadratic approximation than for a piecewise linear or cubic approximation. We provide an explicit formula for these error constants. This is illustrated through one particular flux, the upwind-biased flux introduced by Meng et al., as it is a convex combination of the upwind and downwind fluxes. The studies of wave propagation are typically done through a Fourier ansatz. This higher order Fourier information can be extracted using the smoothness-increasing accuracy-conserving (SIAC) filter. The SIAC filter ties the higher order Fourier information to the negative-order norm in physical space. We show that both the proofs of the ability of the SIAC filter to extract extra accuracy and numerical results are unaffected by the choice of flux." @default.
- W2994004908 created "2019-12-13" @default.
- W2994004908 creator A5050198484 @default.
- W2994004908 creator A5088340901 @default.
- W2994004908 date "2019-12-07" @default.
- W2994004908 modified "2023-10-17" @default.
- W2994004908 title "Superconvergence and the Numerical Flux: a Study Using the Upwind-Biased Flux in Discontinuous Galerkin Methods" @default.
- W2994004908 cites W118329571 @default.
- W2994004908 cites W1624046616 @default.
- W2994004908 cites W1791091458 @default.
- W2994004908 cites W1967923643 @default.
- W2994004908 cites W1986784896 @default.
- W2994004908 cites W1991452709 @default.
- W2994004908 cites W2002083525 @default.
- W2994004908 cites W2027200101 @default.
- W2994004908 cites W2029104529 @default.
- W2994004908 cites W2043223657 @default.
- W2994004908 cites W2049351608 @default.
- W2994004908 cites W2049738452 @default.
- W2994004908 cites W2072814850 @default.
- W2994004908 cites W2082890708 @default.
- W2994004908 cites W2086481418 @default.
- W2994004908 cites W2095188916 @default.
- W2994004908 cites W2129600761 @default.
- W2994004908 cites W2156104539 @default.
- W2994004908 cites W2230806989 @default.
- W2994004908 cites W2317341383 @default.
- W2994004908 cites W2342478278 @default.
- W2994004908 cites W2401794638 @default.
- W2994004908 cites W2523009454 @default.
- W2994004908 cites W2586525440 @default.
- W2994004908 doi "https://doi.org/10.1007/s42967-019-00049-2" @default.
- W2994004908 hasPublicationYear "2019" @default.
- W2994004908 type Work @default.
- W2994004908 sameAs 2994004908 @default.
- W2994004908 citedByCount "6" @default.
- W2994004908 countsByYear W29940049082019 @default.
- W2994004908 countsByYear W29940049082020 @default.
- W2994004908 countsByYear W29940049082021 @default.
- W2994004908 countsByYear W29940049082022 @default.
- W2994004908 countsByYear W29940049082023 @default.
- W2994004908 crossrefType "journal-article" @default.
- W2994004908 hasAuthorship W2994004908A5050198484 @default.
- W2994004908 hasAuthorship W2994004908A5088340901 @default.
- W2994004908 hasBestOaLocation W29940049081 @default.
- W2994004908 hasConcept C11413529 @default.
- W2994004908 hasConcept C41008148 @default.
- W2994004908 hasConceptScore W2994004908C11413529 @default.
- W2994004908 hasConceptScore W2994004908C41008148 @default.
- W2994004908 hasFunder F4320338279 @default.
- W2994004908 hasIssue "3" @default.
- W2994004908 hasLocation W29940049081 @default.
- W2994004908 hasOpenAccess W2994004908 @default.
- W2994004908 hasPrimaryLocation W29940049081 @default.
- W2994004908 hasRelatedWork W2051487156 @default.
- W2994004908 hasRelatedWork W2052122378 @default.
- W2994004908 hasRelatedWork W2053286651 @default.
- W2994004908 hasRelatedWork W2073681303 @default.
- W2994004908 hasRelatedWork W2317200988 @default.
- W2994004908 hasRelatedWork W2544423928 @default.
- W2994004908 hasRelatedWork W2947381795 @default.
- W2994004908 hasRelatedWork W2181413294 @default.
- W2994004908 hasRelatedWork W2181743346 @default.
- W2994004908 hasRelatedWork W2187401768 @default.
- W2994004908 hasVolume "2" @default.
- W2994004908 isParatext "false" @default.
- W2994004908 isRetracted "false" @default.
- W2994004908 magId "2994004908" @default.
- W2994004908 workType "article" @default.