Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994012129> ?p ?o ?g. }
- W2994012129 abstract "Background The Integral Quality Monitor (IQM®) can essentially measure the integral fluence through a segment and provide real-time information about the accuracy of radiation delivery based on comparisons of measured segment signals and pre-calculated reference values. However, the present IQM chamber cannot calculate the dose in the patient. Aim This study aims to make use of IQM field output signals to calculate the number of monitor units (MUs) delivered through an arbitrary treatment field in order to convert Monte Carlo (MC)-generated dose distributions in a patient model into absolute dose. Methods XiO and Monaco treatment planning systems (TPSs) were used to define treatment beam portals for cervix and esophagus conformal radiotherapy as well as prostate intensity-modulated radiotherapy for the translation of patient and beam setup information from DICOM to DOSXYZnrc. The planned beams were simulated in a patient model built from actual patient CT images and each simulated integral field/segment was weighted with its MUs before summation to get the total dose in the plan. The segment beam weights (MUs) were calculated as the ratio of the open-field IQM measured signal and the calculated signal per MU extracted from chamber sensitivity maps. These are the actual MUs delivered not just MUs set. The beam weighting method was evaluated by comparing weighted MC doses with original planned doses using profile and isodose comparisons, dose difference maps, γ analysis and dose-volume histogram (DVH) data. Results γ pass rates of up to 98% were found, except for the esophagus plan where the γ pass rate was below 45%. DVH comparisons showed good agreement for most organs, with the largest differences observed in low-density lung. However, these discrepancies can result from differences in dose calculation algorithms or differences in MUs used for dose weighting planned by the TPS and MUs calculated using IQM field output signals. To test this, a 4-field box DOSXYZnrc MC simulation weighted with planned (XiO) MUs was compared with the same simulation weighted with IQM-based MUs. Dose differences of up to 5% were found on the isocentre slice. For XiO versus MC, up to 7% dose differences were found, indicating additional error due to limitations of XiO's superposition algorithm. Dose differences between MC Monaco and MC EGSnrc were less than 3%. Conclusions The most valuable comparison was MC versus MC as it eliminated algorithm discrepancies and evaluated dose differences precisely according to beam weighting. For XiO TPS, care must be taken as dose differences may also arise due to limitations in XiO's planning software, not merely due to differences in MUs. Overall, the IQM was successfully used to compute beam dose weights to accurately reconstruct the patient dose using unweighted MC beams. Our technique can be used for pre-treatment QA provided each segment output is known and an accurate linac source model is available." @default.
- W2994012129 created "2019-12-13" @default.
- W2994012129 creator A5016147628 @default.
- W2994012129 creator A5026319203 @default.
- W2994012129 date "2019-12-05" @default.
- W2994012129 modified "2023-09-24" @default.
- W2994012129 title "External beam patient dose verification based on the Integral Quality Monitor (IQM®) output signals" @default.
- W2994012129 cites W1179882532 @default.
- W2994012129 cites W1525494999 @default.
- W2994012129 cites W1867618755 @default.
- W2994012129 cites W1964062288 @default.
- W2994012129 cites W1966384169 @default.
- W2994012129 cites W1972916503 @default.
- W2994012129 cites W1976927589 @default.
- W2994012129 cites W1977907857 @default.
- W2994012129 cites W1978172140 @default.
- W2994012129 cites W1978876559 @default.
- W2994012129 cites W1978918877 @default.
- W2994012129 cites W1984318804 @default.
- W2994012129 cites W1996338945 @default.
- W2994012129 cites W2006762993 @default.
- W2994012129 cites W2012856497 @default.
- W2994012129 cites W2016480014 @default.
- W2994012129 cites W2022396879 @default.
- W2994012129 cites W2025109572 @default.
- W2994012129 cites W2034707285 @default.
- W2994012129 cites W2037549333 @default.
- W2994012129 cites W2038665964 @default.
- W2994012129 cites W2039156785 @default.
- W2994012129 cites W2045073901 @default.
- W2994012129 cites W2054126933 @default.
- W2994012129 cites W2057381484 @default.
- W2994012129 cites W2063910347 @default.
- W2994012129 cites W2076581684 @default.
- W2994012129 cites W2082692316 @default.
- W2994012129 cites W2091361931 @default.
- W2994012129 cites W2092063568 @default.
- W2994012129 cites W2092472096 @default.
- W2994012129 cites W2101693111 @default.
- W2994012129 cites W2105174950 @default.
- W2994012129 cites W2106391737 @default.
- W2994012129 cites W2113247062 @default.
- W2994012129 cites W2129768450 @default.
- W2994012129 cites W2147145391 @default.
- W2994012129 cites W2157442057 @default.
- W2994012129 cites W2160198211 @default.
- W2994012129 cites W2168647567 @default.
- W2994012129 cites W2200007245 @default.
- W2994012129 cites W2252929723 @default.
- W2994012129 cites W2346397638 @default.
- W2994012129 cites W2472763413 @default.
- W2994012129 cites W2559963197 @default.
- W2994012129 cites W2599574079 @default.
- W2994012129 cites W2611914446 @default.
- W2994012129 cites W2742551240 @default.
- W2994012129 cites W2747165255 @default.
- W2994012129 cites W2753746220 @default.
- W2994012129 cites W2808920830 @default.
- W2994012129 cites W2894893974 @default.
- W2994012129 cites W3014249553 @default.
- W2994012129 cites W641709543 @default.
- W2994012129 doi "https://doi.org/10.1088/2057-1976/ab5f55" @default.
- W2994012129 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33438659" @default.
- W2994012129 hasPublicationYear "2019" @default.
- W2994012129 type Work @default.
- W2994012129 sameAs 2994012129 @default.
- W2994012129 citedByCount "0" @default.
- W2994012129 crossrefType "journal-article" @default.
- W2994012129 hasAuthorship W2994012129A5016147628 @default.
- W2994012129 hasAuthorship W2994012129A5026319203 @default.
- W2994012129 hasConcept C106436119 @default.
- W2994012129 hasConcept C115961682 @default.
- W2994012129 hasConcept C120665830 @default.
- W2994012129 hasConcept C121332964 @default.
- W2994012129 hasConcept C126838900 @default.
- W2994012129 hasConcept C142724271 @default.
- W2994012129 hasConcept C145148216 @default.
- W2994012129 hasConcept C151770136 @default.
- W2994012129 hasConcept C154945302 @default.
- W2994012129 hasConcept C168834538 @default.
- W2994012129 hasConcept C198291218 @default.
- W2994012129 hasConcept C201645570 @default.
- W2994012129 hasConcept C2778618615 @default.
- W2994012129 hasConcept C2779751349 @default.
- W2994012129 hasConcept C2989005 @default.
- W2994012129 hasConcept C41008148 @default.
- W2994012129 hasConcept C509974204 @default.
- W2994012129 hasConcept C53533937 @default.
- W2994012129 hasConcept C62520636 @default.
- W2994012129 hasConcept C71924100 @default.
- W2994012129 hasConcept C77331912 @default.
- W2994012129 hasConceptScore W2994012129C106436119 @default.
- W2994012129 hasConceptScore W2994012129C115961682 @default.
- W2994012129 hasConceptScore W2994012129C120665830 @default.
- W2994012129 hasConceptScore W2994012129C121332964 @default.
- W2994012129 hasConceptScore W2994012129C126838900 @default.
- W2994012129 hasConceptScore W2994012129C142724271 @default.
- W2994012129 hasConceptScore W2994012129C145148216 @default.
- W2994012129 hasConceptScore W2994012129C151770136 @default.
- W2994012129 hasConceptScore W2994012129C154945302 @default.