Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994053796> ?p ?o ?g. }
- W2994053796 endingPage "951" @default.
- W2994053796 startingPage "939" @default.
- W2994053796 abstract "As an emerging service architecture, microservice enables decomposition of a monolithic web service into a set of independent lightweight services which can be executed independently. With mobile edge computing, microservices can be further deployed in edge clouds dynamically, launched quickly, and migrated across edge clouds easily, providing better services for users in proximity. However, the user mobility can result in frequent switch of nearby edge clouds, which increases the service delay when users move away from their serving edge clouds. To address this issue, this article investigates microservice coordination among edge clouds to enable seamless and real-time responses to service requests from mobile users. The objective of this work is to devise the optimal microservice coordination scheme which can reduce the overall service delay with low costs. To this end, we first propose a dynamic programming-based offline microservice coordination algorithm, that can achieve the globally optimal performance. However, the offline algorithm heavily relies on the availability of the prior information such as computation request arrivals, time-varying channel conditions and edge cloud's computation capabilities required, which is hard to be obtained. Therefore, we reformulate the microservice coordination problem using Markov decision process framework and then propose a reinforcement learning-based online microservice coordination algorithm to learn the optimal strategy. Theoretical analysis proves that the offline algorithm can find the optimal solution while the online algorithm can achieve near-optimal performance. Furthermore, based on two real-world datasets, i.e., the Telecom's base station dataset and Taxi Track dataset from Shanghai, experiments are conducted. The experimental results demonstrate that the proposed online algorithm outperforms existing algorithms in terms of service delay and migration costs, and the achieved performance is close to the optimal performance obtained by the offline algorithm." @default.
- W2994053796 created "2019-12-13" @default.
- W2994053796 creator A5016717153 @default.
- W2994053796 creator A5039532881 @default.
- W2994053796 creator A5054814598 @default.
- W2994053796 creator A5069739048 @default.
- W2994053796 creator A5073217469 @default.
- W2994053796 creator A5079158380 @default.
- W2994053796 date "2021-03-01" @default.
- W2994053796 modified "2023-10-16" @default.
- W2994053796 title "Delay-Aware Microservice Coordination in Mobile Edge Computing: A Reinforcement Learning Approach" @default.
- W2994053796 cites W1512232825 @default.
- W2994053796 cites W1551426553 @default.
- W2994053796 cites W1987479549 @default.
- W2994053796 cites W2025652426 @default.
- W2994053796 cites W2121643887 @default.
- W2994053796 cites W2322013807 @default.
- W2994053796 cites W2343140702 @default.
- W2994053796 cites W2344607369 @default.
- W2994053796 cites W2525400794 @default.
- W2994053796 cites W2556088991 @default.
- W2994053796 cites W2556413364 @default.
- W2994053796 cites W2562344159 @default.
- W2994053796 cites W2563693940 @default.
- W2994053796 cites W2586188710 @default.
- W2994053796 cites W2592966890 @default.
- W2994053796 cites W2614311976 @default.
- W2994053796 cites W2624989916 @default.
- W2994053796 cites W2739795154 @default.
- W2994053796 cites W2752575761 @default.
- W2994053796 cites W2763982073 @default.
- W2994053796 cites W2786309777 @default.
- W2994053796 cites W2787027464 @default.
- W2994053796 cites W2790686993 @default.
- W2994053796 cites W2795411118 @default.
- W2994053796 cites W2801779586 @default.
- W2994053796 cites W2890928364 @default.
- W2994053796 cites W2891286892 @default.
- W2994053796 cites W2894413690 @default.
- W2994053796 cites W2910763180 @default.
- W2994053796 cites W2911633892 @default.
- W2994053796 cites W2913208211 @default.
- W2994053796 cites W2913454702 @default.
- W2994053796 cites W2914261331 @default.
- W2994053796 cites W2919995315 @default.
- W2994053796 cites W2963087201 @default.
- W2994053796 cites W2963376050 @default.
- W2994053796 cites W2964331420 @default.
- W2994053796 cites W3041202696 @default.
- W2994053796 cites W3102454146 @default.
- W2994053796 cites W3111145724 @default.
- W2994053796 cites W974042900 @default.
- W2994053796 doi "https://doi.org/10.1109/tmc.2019.2957804" @default.
- W2994053796 hasPublicationYear "2021" @default.
- W2994053796 type Work @default.
- W2994053796 sameAs 2994053796 @default.
- W2994053796 citedByCount "173" @default.
- W2994053796 countsByYear W29940537962020 @default.
- W2994053796 countsByYear W29940537962021 @default.
- W2994053796 countsByYear W29940537962022 @default.
- W2994053796 countsByYear W29940537962023 @default.
- W2994053796 crossrefType "journal-article" @default.
- W2994053796 hasAuthorship W2994053796A5016717153 @default.
- W2994053796 hasAuthorship W2994053796A5039532881 @default.
- W2994053796 hasAuthorship W2994053796A5054814598 @default.
- W2994053796 hasAuthorship W2994053796A5069739048 @default.
- W2994053796 hasAuthorship W2994053796A5073217469 @default.
- W2994053796 hasAuthorship W2994053796A5079158380 @default.
- W2994053796 hasConcept C105795698 @default.
- W2994053796 hasConcept C106189395 @default.
- W2994053796 hasConcept C111919701 @default.
- W2994053796 hasConcept C120314980 @default.
- W2994053796 hasConcept C136264566 @default.
- W2994053796 hasConcept C138236772 @default.
- W2994053796 hasConcept C154945302 @default.
- W2994053796 hasConcept C159886148 @default.
- W2994053796 hasConcept C162307627 @default.
- W2994053796 hasConcept C162324750 @default.
- W2994053796 hasConcept C2776061582 @default.
- W2994053796 hasConcept C2778456923 @default.
- W2994053796 hasConcept C2778505942 @default.
- W2994053796 hasConcept C2780378061 @default.
- W2994053796 hasConcept C31258907 @default.
- W2994053796 hasConcept C33923547 @default.
- W2994053796 hasConcept C41008148 @default.
- W2994053796 hasConcept C68649174 @default.
- W2994053796 hasConcept C79974875 @default.
- W2994053796 hasConcept C97541855 @default.
- W2994053796 hasConceptScore W2994053796C105795698 @default.
- W2994053796 hasConceptScore W2994053796C106189395 @default.
- W2994053796 hasConceptScore W2994053796C111919701 @default.
- W2994053796 hasConceptScore W2994053796C120314980 @default.
- W2994053796 hasConceptScore W2994053796C136264566 @default.
- W2994053796 hasConceptScore W2994053796C138236772 @default.
- W2994053796 hasConceptScore W2994053796C154945302 @default.
- W2994053796 hasConceptScore W2994053796C159886148 @default.
- W2994053796 hasConceptScore W2994053796C162307627 @default.
- W2994053796 hasConceptScore W2994053796C162324750 @default.