Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994101726> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2994101726 endingPage "101682" @default.
- W2994101726 startingPage "101682" @default.
- W2994101726 abstract "Malware detection is one of the challenging tasks in network security. With the flourishment of network techniques and mobile devices, the threat from malwares has been of an increasing significance, such as metamorphic malwares, zero-day attack, and code obfuscation, etc. Many machine learning (ML)-based malware detection methods are proposed to address this problem. However, considering the attacks from adversarial examples (AEs) and exponential increase in the malware variant thriving nowadays, malware detection is still an active field of research. To overcome the current limitation, we proposed a novel method using data visualization and adversarial training on ML-based detectors to efficiently detect the different types of malwares and their variants. Experimental results on the MS BIG malware database and the Ember database demonstrate that the proposed method is able to prevent the zero-day attack and achieve up to 97.73% accuracy, along with 96.25% in average for all the malwares tested." @default.
- W2994101726 created "2019-12-13" @default.
- W2994101726 creator A5018617528 @default.
- W2994101726 creator A5032688465 @default.
- W2994101726 creator A5039805249 @default.
- W2994101726 creator A5043592748 @default.
- W2994101726 date "2020-02-01" @default.
- W2994101726 modified "2023-10-13" @default.
- W2994101726 title "A novel method for malware detection on ML-based visualization technique" @default.
- W2994101726 cites W1981221397 @default.
- W2994101726 cites W2037026906 @default.
- W2994101726 cites W2047167450 @default.
- W2994101726 cites W2131774270 @default.
- W2994101726 cites W2188195356 @default.
- W2994101726 cites W2252815174 @default.
- W2994101726 cites W2889100747 @default.
- W2994101726 cites W2891828758 @default.
- W2994101726 cites W2900633536 @default.
- W2994101726 cites W2939746199 @default.
- W2994101726 cites W2962700793 @default.
- W2994101726 cites W2963401022 @default.
- W2994101726 cites W2964159205 @default.
- W2994101726 cites W4206742934 @default.
- W2994101726 cites W4231109964 @default.
- W2994101726 doi "https://doi.org/10.1016/j.cose.2019.101682" @default.
- W2994101726 hasPublicationYear "2020" @default.
- W2994101726 type Work @default.
- W2994101726 sameAs 2994101726 @default.
- W2994101726 citedByCount "42" @default.
- W2994101726 countsByYear W29941017262020 @default.
- W2994101726 countsByYear W29941017262021 @default.
- W2994101726 countsByYear W29941017262022 @default.
- W2994101726 countsByYear W29941017262023 @default.
- W2994101726 crossrefType "journal-article" @default.
- W2994101726 hasAuthorship W2994101726A5018617528 @default.
- W2994101726 hasAuthorship W2994101726A5032688465 @default.
- W2994101726 hasAuthorship W2994101726A5039805249 @default.
- W2994101726 hasAuthorship W2994101726A5043592748 @default.
- W2994101726 hasConcept C119857082 @default.
- W2994101726 hasConcept C124101348 @default.
- W2994101726 hasConcept C153180895 @default.
- W2994101726 hasConcept C154945302 @default.
- W2994101726 hasConcept C36464697 @default.
- W2994101726 hasConcept C38652104 @default.
- W2994101726 hasConcept C40305131 @default.
- W2994101726 hasConcept C41008148 @default.
- W2994101726 hasConcept C541664917 @default.
- W2994101726 hasConcept C84525096 @default.
- W2994101726 hasConceptScore W2994101726C119857082 @default.
- W2994101726 hasConceptScore W2994101726C124101348 @default.
- W2994101726 hasConceptScore W2994101726C153180895 @default.
- W2994101726 hasConceptScore W2994101726C154945302 @default.
- W2994101726 hasConceptScore W2994101726C36464697 @default.
- W2994101726 hasConceptScore W2994101726C38652104 @default.
- W2994101726 hasConceptScore W2994101726C40305131 @default.
- W2994101726 hasConceptScore W2994101726C41008148 @default.
- W2994101726 hasConceptScore W2994101726C541664917 @default.
- W2994101726 hasConceptScore W2994101726C84525096 @default.
- W2994101726 hasFunder F4320321001 @default.
- W2994101726 hasFunder F4320327827 @default.
- W2994101726 hasLocation W29941017261 @default.
- W2994101726 hasOpenAccess W2994101726 @default.
- W2994101726 hasPrimaryLocation W29941017261 @default.
- W2994101726 hasRelatedWork W2470502009 @default.
- W2994101726 hasRelatedWork W288126387 @default.
- W2994101726 hasRelatedWork W2900235625 @default.
- W2994101726 hasRelatedWork W2995290701 @default.
- W2994101726 hasRelatedWork W30585751 @default.
- W2994101726 hasRelatedWork W3195170298 @default.
- W2994101726 hasRelatedWork W4386029484 @default.
- W2994101726 hasRelatedWork W4386041582 @default.
- W2994101726 hasRelatedWork W2322373077 @default.
- W2994101726 hasRelatedWork W2574384165 @default.
- W2994101726 hasVolume "89" @default.
- W2994101726 isParatext "false" @default.
- W2994101726 isRetracted "false" @default.
- W2994101726 magId "2994101726" @default.
- W2994101726 workType "article" @default.