Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994156981> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2994156981 endingPage "46" @default.
- W2994156981 startingPage "38" @default.
- W2994156981 abstract "Dealing with data means to group information into a set of categories either in order to learn new artifacts or understand new domains. For this purpose researchers have always looked for the hidden patterns in data that can be defined and compared with other known notions based on the similarity or dissimilarity of their attributes according to well-defined rules. Data mining, having the tools of data classification and data clustering, is one of the most powerful techniques to deal with data in such a manner that it can help researchers identify the required information. As a step forward to address this challenge, experts have utilized clustering techniques as a mean of exploring hidden structure and patterns in underlying data. Improved stability, robustness and accuracy of unsupervised data classification in many fields including pattern recognition, machine learning, information retrieval, image analysis and bioinformatics, clustering has proven itself as a reliable tool. To identify the clusters in datasets algorithm are utilized to partition data set into several groups based on the similarity within a group. There is no specific clustering algorithm, but various algorithms are utilized based on domain of data that constitutes a cluster and the level of efficiency required. Clustering techniques are categorized based upon different approaches. This paper is a survey of few clustering techniques out of many in data mining. For the purpose five of the most common clustering techniques out of many have been discussed. The clustering techniques which have been surveyed are: K-medoids, K- means, Fuzzy C-means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Self- Organizing Map (SOM) clustering." @default.
- W2994156981 created "2019-12-13" @default.
- W2994156981 creator A5000393117 @default.
- W2994156981 creator A5014355425 @default.
- W2994156981 creator A5026893909 @default.
- W2994156981 creator A5049574593 @default.
- W2994156981 date "2015-01-08" @default.
- W2994156981 modified "2023-10-10" @default.
- W2994156981 title "Clustering Techniques in Bioinformatics" @default.
- W2994156981 cites W18034437 @default.
- W2994156981 cites W1987995612 @default.
- W2994156981 cites W1988387273 @default.
- W2994156981 cites W1990058702 @default.
- W2994156981 cites W2009585495 @default.
- W2994156981 cites W2014670975 @default.
- W2994156981 cites W2035246569 @default.
- W2994156981 cites W2077054130 @default.
- W2994156981 cites W2079184215 @default.
- W2994156981 cites W2120806984 @default.
- W2994156981 cites W2139815358 @default.
- W2994156981 cites W2157267081 @default.
- W2994156981 cites W2162403615 @default.
- W2994156981 cites W2182003055 @default.
- W2994156981 cites W2187469854 @default.
- W2994156981 cites W2304023722 @default.
- W2994156981 cites W2314982172 @default.
- W2994156981 cites W2321040346 @default.
- W2994156981 cites W2321846997 @default.
- W2994156981 cites W2337532746 @default.
- W2994156981 cites W2339043042 @default.
- W2994156981 cites W2963470891 @default.
- W2994156981 doi "https://doi.org/10.5815/ijmecs.2015.01.06" @default.
- W2994156981 hasPublicationYear "2015" @default.
- W2994156981 type Work @default.
- W2994156981 sameAs 2994156981 @default.
- W2994156981 citedByCount "16" @default.
- W2994156981 countsByYear W29941569812015 @default.
- W2994156981 countsByYear W29941569812016 @default.
- W2994156981 countsByYear W29941569812018 @default.
- W2994156981 countsByYear W29941569812021 @default.
- W2994156981 countsByYear W29941569812022 @default.
- W2994156981 crossrefType "journal-article" @default.
- W2994156981 hasAuthorship W2994156981A5000393117 @default.
- W2994156981 hasAuthorship W2994156981A5014355425 @default.
- W2994156981 hasAuthorship W2994156981A5026893909 @default.
- W2994156981 hasAuthorship W2994156981A5049574593 @default.
- W2994156981 hasBestOaLocation W29941569811 @default.
- W2994156981 hasConcept C124101348 @default.
- W2994156981 hasConcept C154945302 @default.
- W2994156981 hasConcept C2522767166 @default.
- W2994156981 hasConcept C41008148 @default.
- W2994156981 hasConcept C60644358 @default.
- W2994156981 hasConcept C73555534 @default.
- W2994156981 hasConcept C86803240 @default.
- W2994156981 hasConceptScore W2994156981C124101348 @default.
- W2994156981 hasConceptScore W2994156981C154945302 @default.
- W2994156981 hasConceptScore W2994156981C2522767166 @default.
- W2994156981 hasConceptScore W2994156981C41008148 @default.
- W2994156981 hasConceptScore W2994156981C60644358 @default.
- W2994156981 hasConceptScore W2994156981C73555534 @default.
- W2994156981 hasConceptScore W2994156981C86803240 @default.
- W2994156981 hasIssue "1" @default.
- W2994156981 hasLocation W29941569811 @default.
- W2994156981 hasOpenAccess W2994156981 @default.
- W2994156981 hasPrimaryLocation W29941569811 @default.
- W2994156981 hasRelatedWork W1979871427 @default.
- W2994156981 hasRelatedWork W1999627569 @default.
- W2994156981 hasRelatedWork W2187506573 @default.
- W2994156981 hasRelatedWork W2348097614 @default.
- W2994156981 hasRelatedWork W2354051833 @default.
- W2994156981 hasRelatedWork W2380998760 @default.
- W2994156981 hasRelatedWork W2387405106 @default.
- W2994156981 hasRelatedWork W2392374020 @default.
- W2994156981 hasRelatedWork W3024886233 @default.
- W2994156981 hasRelatedWork W763609066 @default.
- W2994156981 hasVolume "7" @default.
- W2994156981 isParatext "false" @default.
- W2994156981 isRetracted "false" @default.
- W2994156981 magId "2994156981" @default.
- W2994156981 workType "article" @default.