Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994177045> ?p ?o ?g. }
- W2994177045 endingPage "630" @default.
- W2994177045 startingPage "615" @default.
- W2994177045 abstract "Summary Hyperspectral techniques are currently used to retrieve information concerning plant biophysical traits, predominantly targeting pigments, water, and nitrogen‐protein contents, structural elements, and the leaf area index. Even so, hyperspectral data could be more extensively exploited to overcome the breeding challenges being faced under global climate change by advancing high‐throughput field phenotyping. In this study, we explore the potential of field spectroscopy to predict the metabolite profiles in flag leaves and ear bracts in durum wheat. The full‐range reflectance spectra (visible (VIS)‐near‐infrared (NIR)‐short wave infrared (SWIR)) of flag leaves, ears and canopies were recorded in a collection of contrasting genotypes grown in four environments under different water regimes. GC‐MS metabolite profiles were analyzed in the flag leaves, ear bracts, glumes, and lemmas. The results from regression models exceeded 50% of the explained variation (adj‐ R 2 in the validation sets) for at least 15 metabolites in each plant organ, whereas their errors were considerably low. The best regressions were obtained for malate (82%), glycerate and serine (63%) in leaves; myo ‐inositol (81%) in lemmas; glycolate (80%) in glumes; sucrose in leaves and glumes (68%); γ‐aminobutyric acid (GABA) in leaves and glumes (61% and 71%, respectively); proline and glucose in lemmas (74% and 71%, respectively) and glumes (72% and 69%, respectively). The selection of wavebands in the models and the performance of the models based on canopy and VIS organ spectra and yield prediction are discussed. We feel that this technique will likely to be of interest due to its broad applicability in ecophysiology research, plant breeding programmes, and the agri‐food industry." @default.
- W2994177045 created "2019-12-13" @default.
- W2994177045 creator A5038609222 @default.
- W2994177045 creator A5040413856 @default.
- W2994177045 creator A5072329153 @default.
- W2994177045 creator A5080580916 @default.
- W2994177045 creator A5080730936 @default.
- W2994177045 creator A5082852942 @default.
- W2994177045 date "2020-01-10" @default.
- W2994177045 modified "2023-10-18" @default.
- W2994177045 title "Assessing durum wheat ear and leaf metabolomes in the field through hyperspectral data" @default.
- W2994177045 cites W1591074079 @default.
- W2994177045 cites W1600705510 @default.
- W2994177045 cites W1956183645 @default.
- W2994177045 cites W1967166960 @default.
- W2994177045 cites W1968894504 @default.
- W2994177045 cites W1970028096 @default.
- W2994177045 cites W1973866236 @default.
- W2994177045 cites W1974110440 @default.
- W2994177045 cites W1975691015 @default.
- W2994177045 cites W1977084785 @default.
- W2994177045 cites W1979976980 @default.
- W2994177045 cites W1985643287 @default.
- W2994177045 cites W1994573931 @default.
- W2994177045 cites W1995103050 @default.
- W2994177045 cites W1996379195 @default.
- W2994177045 cites W2002714443 @default.
- W2994177045 cites W2006317824 @default.
- W2994177045 cites W2013665199 @default.
- W2994177045 cites W2019916133 @default.
- W2994177045 cites W2031335397 @default.
- W2994177045 cites W2043978343 @default.
- W2994177045 cites W2051128904 @default.
- W2994177045 cites W2067877300 @default.
- W2994177045 cites W2082110213 @default.
- W2994177045 cites W2085624281 @default.
- W2994177045 cites W2093386912 @default.
- W2994177045 cites W2099704405 @default.
- W2994177045 cites W2116952004 @default.
- W2994177045 cites W2118476033 @default.
- W2994177045 cites W2132235209 @default.
- W2994177045 cites W2132460892 @default.
- W2994177045 cites W2137564764 @default.
- W2994177045 cites W2150853404 @default.
- W2994177045 cites W2151346683 @default.
- W2994177045 cites W2165916356 @default.
- W2994177045 cites W2171670608 @default.
- W2994177045 cites W2172282640 @default.
- W2994177045 cites W2332095603 @default.
- W2994177045 cites W2492579539 @default.
- W2994177045 cites W2512479600 @default.
- W2994177045 cites W2517171266 @default.
- W2994177045 cites W2517497590 @default.
- W2994177045 cites W2519231734 @default.
- W2994177045 cites W2562063914 @default.
- W2994177045 cites W2567154847 @default.
- W2994177045 cites W2589732698 @default.
- W2994177045 cites W2591840085 @default.
- W2994177045 cites W2698067059 @default.
- W2994177045 cites W2779955274 @default.
- W2994177045 cites W2792794208 @default.
- W2994177045 cites W2794495592 @default.
- W2994177045 cites W2808187260 @default.
- W2994177045 cites W2889569877 @default.
- W2994177045 cites W2896193909 @default.
- W2994177045 cites W2899787482 @default.
- W2994177045 cites W2913626880 @default.
- W2994177045 cites W2915459044 @default.
- W2994177045 cites W2921592755 @default.
- W2994177045 cites W2946556606 @default.
- W2994177045 cites W2947572107 @default.
- W2994177045 doi "https://doi.org/10.1111/tpj.14636" @default.
- W2994177045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31808224" @default.
- W2994177045 hasPublicationYear "2020" @default.
- W2994177045 type Work @default.
- W2994177045 sameAs 2994177045 @default.
- W2994177045 citedByCount "31" @default.
- W2994177045 countsByYear W29941770452020 @default.
- W2994177045 countsByYear W29941770452021 @default.
- W2994177045 countsByYear W29941770452022 @default.
- W2994177045 countsByYear W29941770452023 @default.
- W2994177045 crossrefType "journal-article" @default.
- W2994177045 hasAuthorship W2994177045A5038609222 @default.
- W2994177045 hasAuthorship W2994177045A5040413856 @default.
- W2994177045 hasAuthorship W2994177045A5072329153 @default.
- W2994177045 hasAuthorship W2994177045A5080580916 @default.
- W2994177045 hasAuthorship W2994177045A5080730936 @default.
- W2994177045 hasAuthorship W2994177045A5082852942 @default.
- W2994177045 hasBestOaLocation W29941770451 @default.
- W2994177045 hasConcept C101000010 @default.
- W2994177045 hasConcept C127313418 @default.
- W2994177045 hasConcept C144027150 @default.
- W2994177045 hasConcept C159078339 @default.
- W2994177045 hasConcept C178165689 @default.
- W2994177045 hasConcept C22752065 @default.
- W2994177045 hasConcept C2777477808 @default.
- W2994177045 hasConcept C55493867 @default.
- W2994177045 hasConcept C59822182 @default.