Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994212593> ?p ?o ?g. }
- W2994212593 endingPage "559" @default.
- W2994212593 startingPage "549" @default.
- W2994212593 abstract "Internet-connected smart devices in, on, and around us, (e.g., embedded devices, wearable devices, and smart sensors) can collect human biometric features and facilitate identity authentication. Existing approaches are mainly based on pattern recognition and machine learning algorithms, which may not be capable of processing uncertain user information. Thus, focusing on the uncertainty of users' identity, this article proposes a fuzzy authentication system based on neural network and extreme value analysis. Specifically, we utilize biometric gait information of human body recognition. Our proposed authentication system is designed to implicitly authenticate users based on their gait, and can detect uncertain users and reject the authentication of unknown users. The performance is evaluated using an open dataset of 153 volunteers, where we manage to achieve a recognition accuracy rate of 98.4% and an error rate of unauthorized users at 6%." @default.
- W2994212593 created "2019-12-13" @default.
- W2994212593 creator A5001746807 @default.
- W2994212593 creator A5007151963 @default.
- W2994212593 creator A5021744557 @default.
- W2994212593 creator A5080286262 @default.
- W2994212593 date "2021-03-01" @default.
- W2994212593 modified "2023-10-08" @default.
- W2994212593 title "A Fuzzy Authentication System Based on Neural Network Learning and Extreme Value Statistics" @default.
- W2994212593 cites W1523682477 @default.
- W2994212593 cites W1840637580 @default.
- W2994212593 cites W1855338026 @default.
- W2994212593 cites W1915113127 @default.
- W2994212593 cites W1981467401 @default.
- W2994212593 cites W1983139635 @default.
- W2994212593 cites W2006976778 @default.
- W2994212593 cites W2008348094 @default.
- W2994212593 cites W2028656789 @default.
- W2994212593 cites W2051071129 @default.
- W2994212593 cites W2062273853 @default.
- W2994212593 cites W2075303654 @default.
- W2994212593 cites W2091951046 @default.
- W2994212593 cites W2102950522 @default.
- W2994212593 cites W2146886120 @default.
- W2994212593 cites W2147298014 @default.
- W2994212593 cites W2147467411 @default.
- W2994212593 cites W2151373013 @default.
- W2994212593 cites W2165966284 @default.
- W2994212593 cites W2171062881 @default.
- W2994212593 cites W2308155023 @default.
- W2994212593 cites W2409587536 @default.
- W2994212593 cites W2532423614 @default.
- W2994212593 cites W2548928501 @default.
- W2994212593 cites W2549909981 @default.
- W2994212593 cites W2750837986 @default.
- W2994212593 cites W2765195079 @default.
- W2994212593 cites W2786497292 @default.
- W2994212593 cites W2791089929 @default.
- W2994212593 cites W2803333587 @default.
- W2994212593 cites W2884068903 @default.
- W2994212593 cites W2915815650 @default.
- W2994212593 cites W2917996064 @default.
- W2994212593 cites W2934539873 @default.
- W2994212593 doi "https://doi.org/10.1109/tfuzz.2019.2956896" @default.
- W2994212593 hasPublicationYear "2021" @default.
- W2994212593 type Work @default.
- W2994212593 sameAs 2994212593 @default.
- W2994212593 citedByCount "23" @default.
- W2994212593 countsByYear W29942125932020 @default.
- W2994212593 countsByYear W29942125932021 @default.
- W2994212593 countsByYear W29942125932022 @default.
- W2994212593 countsByYear W29942125932023 @default.
- W2994212593 crossrefType "journal-article" @default.
- W2994212593 hasAuthorship W2994212593A5001746807 @default.
- W2994212593 hasAuthorship W2994212593A5007151963 @default.
- W2994212593 hasAuthorship W2994212593A5021744557 @default.
- W2994212593 hasAuthorship W2994212593A5080286262 @default.
- W2994212593 hasConcept C119857082 @default.
- W2994212593 hasConcept C124101348 @default.
- W2994212593 hasConcept C148417208 @default.
- W2994212593 hasConcept C149635348 @default.
- W2994212593 hasConcept C150594956 @default.
- W2994212593 hasConcept C153180895 @default.
- W2994212593 hasConcept C154945302 @default.
- W2994212593 hasConcept C184297639 @default.
- W2994212593 hasConcept C38652104 @default.
- W2994212593 hasConcept C40969351 @default.
- W2994212593 hasConcept C41008148 @default.
- W2994212593 hasConcept C50644808 @default.
- W2994212593 hasConcept C54290928 @default.
- W2994212593 hasConcept C58166 @default.
- W2994212593 hasConceptScore W2994212593C119857082 @default.
- W2994212593 hasConceptScore W2994212593C124101348 @default.
- W2994212593 hasConceptScore W2994212593C148417208 @default.
- W2994212593 hasConceptScore W2994212593C149635348 @default.
- W2994212593 hasConceptScore W2994212593C150594956 @default.
- W2994212593 hasConceptScore W2994212593C153180895 @default.
- W2994212593 hasConceptScore W2994212593C154945302 @default.
- W2994212593 hasConceptScore W2994212593C184297639 @default.
- W2994212593 hasConceptScore W2994212593C38652104 @default.
- W2994212593 hasConceptScore W2994212593C40969351 @default.
- W2994212593 hasConceptScore W2994212593C41008148 @default.
- W2994212593 hasConceptScore W2994212593C50644808 @default.
- W2994212593 hasConceptScore W2994212593C54290928 @default.
- W2994212593 hasConceptScore W2994212593C58166 @default.
- W2994212593 hasFunder F4320321001 @default.
- W2994212593 hasFunder F4320335787 @default.
- W2994212593 hasIssue "3" @default.
- W2994212593 hasLocation W29942125931 @default.
- W2994212593 hasOpenAccess W2994212593 @default.
- W2994212593 hasPrimaryLocation W29942125931 @default.
- W2994212593 hasRelatedWork W2394503341 @default.
- W2994212593 hasRelatedWork W2559728278 @default.
- W2994212593 hasRelatedWork W2586782320 @default.
- W2994212593 hasRelatedWork W2735740689 @default.
- W2994212593 hasRelatedWork W2947286791 @default.
- W2994212593 hasRelatedWork W3081354034 @default.
- W2994212593 hasRelatedWork W3093862477 @default.