Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994260049> ?p ?o ?g. }
- W2994260049 abstract "Deciphering the meaning of the human DNA is an outstanding goal which would revolutionize medicine and our way for treating diseases. In recent years, non-coding RNAs have attracted much attention and shown to be functional in part. Yet the importance of these RNAs especially for higher biological functions remains under investigation.In this paper, we analyze RNA-seq data, including non-coding and protein coding RNAs, from lung adenocarcinoma patients, a histologic subtype of non-small-cell lung cancer, with deep learning neural networks and other state-of-the-art classification methods. The purpose of our paper is three-fold. First, we compare the classification performance of different versions of deep belief networks with SVMs, decision trees and random forests. Second, we compare the classification capabilities of protein coding and non-coding RNAs. Third, we study the influence of feature selection on the classification performance.As a result, we find that deep belief networks perform at least competitively to other state-of-the-art classifiers. Second, data from non-coding RNAs perform better than coding RNAs across a number of different classification methods. This demonstrates the equivalence of predictive information as captured by non-coding RNAs compared to protein coding RNAs, conventionally used in computational diagnostics tasks. Third, we find that feature selection has in general a negative effect on the classification performance which means that unfiltered data with all features give the best classification results.Our study is the first to use ncRNAs beyond miRNAs for the computational classification of cancer and for performing a direct comparison of the classification capabilities of protein coding RNAs and non-coding RNAs." @default.
- W2994260049 created "2019-12-13" @default.
- W2994260049 creator A5044244385 @default.
- W2994260049 creator A5057625030 @default.
- W2994260049 creator A5063692315 @default.
- W2994260049 creator A5070414207 @default.
- W2994260049 creator A5075215786 @default.
- W2994260049 date "2019-12-01" @default.
- W2994260049 modified "2023-10-10" @default.
- W2994260049 title "Comparing biological information contained in mRNA and non-coding RNAs for classification of lung cancer patients" @default.
- W2994260049 cites W1019830208 @default.
- W2994260049 cites W1454791104 @default.
- W2994260049 cites W1519070462 @default.
- W2994260049 cites W1882502294 @default.
- W2994260049 cites W1941659294 @default.
- W2994260049 cites W1951403192 @default.
- W2994260049 cites W1971224531 @default.
- W2994260049 cites W1977099007 @default.
- W2994260049 cites W1977145914 @default.
- W2994260049 cites W2003357516 @default.
- W2994260049 cites W2006797972 @default.
- W2994260049 cites W2007176121 @default.
- W2994260049 cites W2016546231 @default.
- W2994260049 cites W2022397091 @default.
- W2994260049 cites W2030047242 @default.
- W2994260049 cites W2032183472 @default.
- W2994260049 cites W2032555181 @default.
- W2994260049 cites W2035075450 @default.
- W2994260049 cites W2038663466 @default.
- W2994260049 cites W2042445733 @default.
- W2994260049 cites W2058839892 @default.
- W2994260049 cites W2061641806 @default.
- W2994260049 cites W2067374373 @default.
- W2994260049 cites W2068205741 @default.
- W2994260049 cites W2068711157 @default.
- W2994260049 cites W2070777085 @default.
- W2994260049 cites W2071480068 @default.
- W2994260049 cites W2084336274 @default.
- W2994260049 cites W2087377443 @default.
- W2994260049 cites W2097702406 @default.
- W2994260049 cites W2099468911 @default.
- W2994260049 cites W2100495367 @default.
- W2994260049 cites W2105981176 @default.
- W2994260049 cites W2106085645 @default.
- W2994260049 cites W2109100311 @default.
- W2994260049 cites W2112001233 @default.
- W2994260049 cites W2116041602 @default.
- W2994260049 cites W2119726708 @default.
- W2994260049 cites W2128084896 @default.
- W2994260049 cites W2128559801 @default.
- W2994260049 cites W2133090587 @default.
- W2994260049 cites W2135156700 @default.
- W2994260049 cites W2135810600 @default.
- W2994260049 cites W2136922672 @default.
- W2994260049 cites W2138207763 @default.
- W2994260049 cites W2138237282 @default.
- W2994260049 cites W2143612262 @default.
- W2994260049 cites W2143908786 @default.
- W2994260049 cites W2144015117 @default.
- W2994260049 cites W2146648170 @default.
- W2994260049 cites W2153635508 @default.
- W2994260049 cites W2155653793 @default.
- W2994260049 cites W2170551349 @default.
- W2994260049 cites W2171528238 @default.
- W2994260049 cites W2202505358 @default.
- W2994260049 cites W2236822143 @default.
- W2994260049 cites W2256782633 @default.
- W2994260049 cites W2338427758 @default.
- W2994260049 cites W2460336582 @default.
- W2994260049 cites W2469533606 @default.
- W2994260049 cites W2503135644 @default.
- W2994260049 cites W2513453485 @default.
- W2994260049 cites W2558692177 @default.
- W2994260049 cites W2566863750 @default.
- W2994260049 cites W2588840062 @default.
- W2994260049 cites W2748715550 @default.
- W2994260049 cites W2768096340 @default.
- W2994260049 cites W2768371426 @default.
- W2994260049 cites W2769644321 @default.
- W2994260049 cites W2770788258 @default.
- W2994260049 cites W2793359584 @default.
- W2994260049 cites W2797303008 @default.
- W2994260049 cites W2804711710 @default.
- W2994260049 cites W2884749684 @default.
- W2994260049 cites W2895907232 @default.
- W2994260049 cites W2911964244 @default.
- W2994260049 cites W2912102502 @default.
- W2994260049 cites W2919115771 @default.
- W2994260049 cites W2925920795 @default.
- W2994260049 cites W3102322688 @default.
- W2994260049 cites W3121992837 @default.
- W2994260049 cites W4231109964 @default.
- W2994260049 cites W4249247926 @default.
- W2994260049 cites W2549252856 @default.
- W2994260049 doi "https://doi.org/10.1186/s12885-019-6338-1" @default.
- W2994260049 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6892207" @default.
- W2994260049 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31796020" @default.
- W2994260049 hasPublicationYear "2019" @default.
- W2994260049 type Work @default.
- W2994260049 sameAs 2994260049 @default.