Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994307986> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2994307986 abstract "The combination of quantum and classical computational resources towards more effective algorithms is one of the most promising research directions in computer science. In such a hybrid framework, existing quantum computers can be used to their fullest extent and for practical applications. Generative modeling is one of the applications that could benefit the most, either by speeding up the underlying sampling methods or by unlocking more general models. In this work, we design a number of hybrid generative models and validate them on real hardware and datasets. The quantum-assisted Boltzmann machine is trained to generate realistic artificial images on quantum annealers. Several challenges in state-of-the-art annealers shall be overcome before one can assess their actual performance. We attack some of the most pressing challenges such as the sparse qubit-to-qubit connectivity, the unknown effective-temperature, and the noise on the control parameters. In order to handle datasets of realistic size and complexity, we include latent variables and obtain a more general model called the quantum-assisted Helmholtz machine. In the context of gate-based computers, the quantum circuit Born machine is trained to encode a target probability distribution in the wavefunction of a set of qubits. We implement this model on a trapped ion computer using low-depth circuits and native gates. We use the generative modeling performance on the canonical Bars-and-Stripes dataset to design a benchmark for hybrid systems. It is reasonable to expect that quantum data, i.e., datasets of wavefunctions, will become available in the future. We derive a quantum generative adversarial network that works with quantum data. Here, two circuits are optimized in tandem: one tries to generate suitable quantum states, the other tries to distinguish between target and generated states." @default.
- W2994307986 created "2019-12-13" @default.
- W2994307986 creator A5031060462 @default.
- W2994307986 date "2019-11-28" @default.
- W2994307986 modified "2023-09-26" @default.
- W2994307986 title "Quantum-classical generative models for machine learning" @default.
- W2994307986 hasPublicationYear "2019" @default.
- W2994307986 type Work @default.
- W2994307986 sameAs 2994307986 @default.
- W2994307986 citedByCount "0" @default.
- W2994307986 crossrefType "dissertation" @default.
- W2994307986 hasAuthorship W2994307986A5031060462 @default.
- W2994307986 hasConcept C108583219 @default.
- W2994307986 hasConcept C113775141 @default.
- W2994307986 hasConcept C11413529 @default.
- W2994307986 hasConcept C119857082 @default.
- W2994307986 hasConcept C121332964 @default.
- W2994307986 hasConcept C124148022 @default.
- W2994307986 hasConcept C13280743 @default.
- W2994307986 hasConcept C151730666 @default.
- W2994307986 hasConcept C154945302 @default.
- W2994307986 hasConcept C167966045 @default.
- W2994307986 hasConcept C185798385 @default.
- W2994307986 hasConcept C192576344 @default.
- W2994307986 hasConcept C199354608 @default.
- W2994307986 hasConcept C203087015 @default.
- W2994307986 hasConcept C205649164 @default.
- W2994307986 hasConcept C2779343474 @default.
- W2994307986 hasConcept C39890363 @default.
- W2994307986 hasConcept C41008148 @default.
- W2994307986 hasConcept C51003876 @default.
- W2994307986 hasConcept C58053490 @default.
- W2994307986 hasConcept C62520636 @default.
- W2994307986 hasConcept C80444323 @default.
- W2994307986 hasConcept C84114770 @default.
- W2994307986 hasConcept C86803240 @default.
- W2994307986 hasConceptScore W2994307986C108583219 @default.
- W2994307986 hasConceptScore W2994307986C113775141 @default.
- W2994307986 hasConceptScore W2994307986C11413529 @default.
- W2994307986 hasConceptScore W2994307986C119857082 @default.
- W2994307986 hasConceptScore W2994307986C121332964 @default.
- W2994307986 hasConceptScore W2994307986C124148022 @default.
- W2994307986 hasConceptScore W2994307986C13280743 @default.
- W2994307986 hasConceptScore W2994307986C151730666 @default.
- W2994307986 hasConceptScore W2994307986C154945302 @default.
- W2994307986 hasConceptScore W2994307986C167966045 @default.
- W2994307986 hasConceptScore W2994307986C185798385 @default.
- W2994307986 hasConceptScore W2994307986C192576344 @default.
- W2994307986 hasConceptScore W2994307986C199354608 @default.
- W2994307986 hasConceptScore W2994307986C203087015 @default.
- W2994307986 hasConceptScore W2994307986C205649164 @default.
- W2994307986 hasConceptScore W2994307986C2779343474 @default.
- W2994307986 hasConceptScore W2994307986C39890363 @default.
- W2994307986 hasConceptScore W2994307986C41008148 @default.
- W2994307986 hasConceptScore W2994307986C51003876 @default.
- W2994307986 hasConceptScore W2994307986C58053490 @default.
- W2994307986 hasConceptScore W2994307986C62520636 @default.
- W2994307986 hasConceptScore W2994307986C80444323 @default.
- W2994307986 hasConceptScore W2994307986C84114770 @default.
- W2994307986 hasConceptScore W2994307986C86803240 @default.
- W2994307986 hasLocation W29943079861 @default.
- W2994307986 hasOpenAccess W2994307986 @default.
- W2994307986 hasPrimaryLocation W29943079861 @default.
- W2994307986 hasRelatedWork W2414059285 @default.
- W2994307986 hasRelatedWork W2752862743 @default.
- W2994307986 hasRelatedWork W2784994528 @default.
- W2994307986 hasRelatedWork W2808711456 @default.
- W2994307986 hasRelatedWork W2898121159 @default.
- W2994307986 hasRelatedWork W2955565695 @default.
- W2994307986 hasRelatedWork W2980456669 @default.
- W2994307986 hasRelatedWork W2982539809 @default.
- W2994307986 hasRelatedWork W2991870932 @default.
- W2994307986 hasRelatedWork W3022026918 @default.
- W2994307986 hasRelatedWork W3033233627 @default.
- W2994307986 hasRelatedWork W3036139965 @default.
- W2994307986 hasRelatedWork W3037649077 @default.
- W2994307986 hasRelatedWork W3106522152 @default.
- W2994307986 hasRelatedWork W3147201471 @default.
- W2994307986 hasRelatedWork W3176232175 @default.
- W2994307986 hasRelatedWork W3186691600 @default.
- W2994307986 hasRelatedWork W3200471257 @default.
- W2994307986 hasRelatedWork W3201320135 @default.
- W2994307986 hasRelatedWork W3211888258 @default.
- W2994307986 isParatext "false" @default.
- W2994307986 isRetracted "false" @default.
- W2994307986 magId "2994307986" @default.
- W2994307986 workType "dissertation" @default.