Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994392499> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2994392499 abstract "The use of machine learning systems has great potential to better predict probabilities of default for credit underwriting. Despite this advantage, herewith there exists the substantial risk of discrimination. Moreover, machine learning models with the highest prediction-accuracy are often the least explicable (i.e. explainable). Nonetheless, explicability is needed to create accountability of automated credit decisions by machine learning systems. Furthermore, there exists a regulatory need for explicability of machine learning systems in the General Data Protection Regulation (GDPR) and the Consumer Credit Directive (CCD). Besides that, an ethical- and societal need exists for explicability. Within the exploration of literature, it becomes clear that research lacks on how to move from a high-level principle like explicability, towards a prospective assessment of a machine learning use case on this principle, it lacks a multi-disciplinary perspective, and it misses an assessment framework that can guide decision-makers within machine learning use cases, aligned with a multi-organizational development lifecycle. This research aims to design a prospective pragmatic assessment framework that can guide decision-makers, within machine learning applications in European credit underwriting cases from the point of view of explicability. To accomplish this, the Design Science Research Methodology (DSRM), complemented with the Value Sensitive Design (VSD) approach, is utilized. To this end, the Explicability Assessment Framework (EAF) was developed. This framework is adapted to the context- and explanation characteristics of the case, and aligns with the CRISP-DM development lifecycle. It was found in two case studies that the framework helps with the decision-making whether a machine learning system is sufficiently explicable or not. Lastly, a wide range of future research areas is identified that needs attention: empirical validation and expansion of the framework, the relevance for automated explanation creation, the scalability to other context and a large amount of explanations, and the practical perspective regarding adoption in the industry." @default.
- W2994392499 created "2019-12-13" @default.
- W2994392499 creator A5070452123 @default.
- W2994392499 date "2019-01-01" @default.
- W2994392499 modified "2023-09-27" @default.
- W2994392499 title "Towards Explaining Automated Credit Decisions: The design of an Explicability Assessment Framework (EAF) for Machine Learning Systems" @default.
- W2994392499 hasPublicationYear "2019" @default.
- W2994392499 type Work @default.
- W2994392499 sameAs 2994392499 @default.
- W2994392499 citedByCount "0" @default.
- W2994392499 crossrefType "journal-article" @default.
- W2994392499 hasAuthorship W2994392499A5070452123 @default.
- W2994392499 hasConcept C112930515 @default.
- W2994392499 hasConcept C119857082 @default.
- W2994392499 hasConcept C144133560 @default.
- W2994392499 hasConcept C151730666 @default.
- W2994392499 hasConcept C154945302 @default.
- W2994392499 hasConcept C162118730 @default.
- W2994392499 hasConcept C26503482 @default.
- W2994392499 hasConcept C2779343474 @default.
- W2994392499 hasConcept C41008148 @default.
- W2994392499 hasConcept C56739046 @default.
- W2994392499 hasConcept C86803240 @default.
- W2994392499 hasConceptScore W2994392499C112930515 @default.
- W2994392499 hasConceptScore W2994392499C119857082 @default.
- W2994392499 hasConceptScore W2994392499C144133560 @default.
- W2994392499 hasConceptScore W2994392499C151730666 @default.
- W2994392499 hasConceptScore W2994392499C154945302 @default.
- W2994392499 hasConceptScore W2994392499C162118730 @default.
- W2994392499 hasConceptScore W2994392499C26503482 @default.
- W2994392499 hasConceptScore W2994392499C2779343474 @default.
- W2994392499 hasConceptScore W2994392499C41008148 @default.
- W2994392499 hasConceptScore W2994392499C56739046 @default.
- W2994392499 hasConceptScore W2994392499C86803240 @default.
- W2994392499 hasLocation W29943924991 @default.
- W2994392499 hasOpenAccess W2994392499 @default.
- W2994392499 hasPrimaryLocation W29943924991 @default.
- W2994392499 hasRelatedWork W185394325 @default.
- W2994392499 hasRelatedWork W1977752232 @default.
- W2994392499 hasRelatedWork W2005538843 @default.
- W2994392499 hasRelatedWork W2037033339 @default.
- W2994392499 hasRelatedWork W2107363149 @default.
- W2994392499 hasRelatedWork W2119754628 @default.
- W2994392499 hasRelatedWork W2144855058 @default.
- W2994392499 hasRelatedWork W2147705373 @default.
- W2994392499 hasRelatedWork W2161648430 @default.
- W2994392499 hasRelatedWork W2174176735 @default.
- W2994392499 hasRelatedWork W2267133023 @default.
- W2994392499 hasRelatedWork W2595046949 @default.
- W2994392499 hasRelatedWork W2969327633 @default.
- W2994392499 hasRelatedWork W2998597945 @default.
- W2994392499 hasRelatedWork W3087684766 @default.
- W2994392499 hasRelatedWork W3088774108 @default.
- W2994392499 hasRelatedWork W3196860672 @default.
- W2994392499 hasRelatedWork W366230984 @default.
- W2994392499 hasRelatedWork W78107666 @default.
- W2994392499 hasRelatedWork W2186640872 @default.
- W2994392499 isParatext "false" @default.
- W2994392499 isRetracted "false" @default.
- W2994392499 magId "2994392499" @default.
- W2994392499 workType "article" @default.