Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994459744> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2994459744 abstract "This paper presents an acoustic-to-articulatory mapping of a three-dimensional theoretical vocal tract model using deep learning methods. Prominent deep learning-based network structures are explored and evaluated for their suitability in capturing the relationship between acoustic and articulatory-oriented vocal tract parameters. The dataset was synthesized from VocalTractLab, a three-dimensional theoretical articulatory synthesizer, in forms of the pairs of acoustic, represented by Mel-frequency cepstral coefficients (MFCCs), and articulatory signals, represented by 23 vocal tract parameters. The sentence structure used in the dataset generation were both monosyllabic and disyllabic vowel articulations. Models were evaluated using the root-mean-square error (RMSE) and R-squared (R2). The deep artificial neural network architecture (DNN), regulating using batch normalization, achieves the best performance for both inversion tasks, RMSE of 0.015 and R2 of 0.970 for monosyllabic vowels and RMSE of 0.015and R2 of 0.975 for disyllabic vowels. The comparison, between a formant of a sound from inverted articulatory parameters and the original synthesized sound, demonstrates that there is no statistically different between original and estimated parameters. The results indicate that the deep learning-based model is effectively estimated articulatory parameters in a three-dimensional space of a vocal tract model." @default.
- W2994459744 created "2019-12-13" @default.
- W2994459744 creator A5003455071 @default.
- W2994459744 creator A5076531368 @default.
- W2994459744 date "2019-10-01" @default.
- W2994459744 modified "2023-09-27" @default.
- W2994459744 title "Acoustic-to-Articulatory Inversion of a Three-dimensional Theoretical Vocal Tract Model Using Deep Learning-based Model" @default.
- W2994459744 cites W1499220978 @default.
- W2994459744 cites W1595178389 @default.
- W2994459744 cites W1677182931 @default.
- W2994459744 cites W2064675550 @default.
- W2994459744 cites W2111701360 @default.
- W2994459744 cites W2123778414 @default.
- W2994459744 cites W2131774270 @default.
- W2994459744 cites W2191779130 @default.
- W2994459744 cites W2787248829 @default.
- W2994459744 cites W2888898948 @default.
- W2994459744 cites W2919115771 @default.
- W2994459744 cites W2979074722 @default.
- W2994459744 doi "https://doi.org/10.1109/icawst.2019.8923588" @default.
- W2994459744 hasPublicationYear "2019" @default.
- W2994459744 type Work @default.
- W2994459744 sameAs 2994459744 @default.
- W2994459744 citedByCount "1" @default.
- W2994459744 countsByYear W29944597442022 @default.
- W2994459744 crossrefType "proceedings-article" @default.
- W2994459744 hasAuthorship W2994459744A5003455071 @default.
- W2994459744 hasAuthorship W2994459744A5076531368 @default.
- W2994459744 hasConcept C105795698 @default.
- W2994459744 hasConcept C108583219 @default.
- W2994459744 hasConcept C136886441 @default.
- W2994459744 hasConcept C139945424 @default.
- W2994459744 hasConcept C144024400 @default.
- W2994459744 hasConcept C151989614 @default.
- W2994459744 hasConcept C153180895 @default.
- W2994459744 hasConcept C154945302 @default.
- W2994459744 hasConcept C158215666 @default.
- W2994459744 hasConcept C19165224 @default.
- W2994459744 hasConcept C2779581591 @default.
- W2994459744 hasConcept C28490314 @default.
- W2994459744 hasConcept C33923547 @default.
- W2994459744 hasConcept C41008148 @default.
- W2994459744 hasConcept C47401133 @default.
- W2994459744 hasConcept C50644808 @default.
- W2994459744 hasConcept C52622490 @default.
- W2994459744 hasConcept C88485024 @default.
- W2994459744 hasConceptScore W2994459744C105795698 @default.
- W2994459744 hasConceptScore W2994459744C108583219 @default.
- W2994459744 hasConceptScore W2994459744C136886441 @default.
- W2994459744 hasConceptScore W2994459744C139945424 @default.
- W2994459744 hasConceptScore W2994459744C144024400 @default.
- W2994459744 hasConceptScore W2994459744C151989614 @default.
- W2994459744 hasConceptScore W2994459744C153180895 @default.
- W2994459744 hasConceptScore W2994459744C154945302 @default.
- W2994459744 hasConceptScore W2994459744C158215666 @default.
- W2994459744 hasConceptScore W2994459744C19165224 @default.
- W2994459744 hasConceptScore W2994459744C2779581591 @default.
- W2994459744 hasConceptScore W2994459744C28490314 @default.
- W2994459744 hasConceptScore W2994459744C33923547 @default.
- W2994459744 hasConceptScore W2994459744C41008148 @default.
- W2994459744 hasConceptScore W2994459744C47401133 @default.
- W2994459744 hasConceptScore W2994459744C50644808 @default.
- W2994459744 hasConceptScore W2994459744C52622490 @default.
- W2994459744 hasConceptScore W2994459744C88485024 @default.
- W2994459744 hasLocation W29944597441 @default.
- W2994459744 hasOpenAccess W2994459744 @default.
- W2994459744 hasPrimaryLocation W29944597441 @default.
- W2994459744 hasRelatedWork W1486821748 @default.
- W2994459744 hasRelatedWork W178685223 @default.
- W2994459744 hasRelatedWork W1841184975 @default.
- W2994459744 hasRelatedWork W2045785976 @default.
- W2994459744 hasRelatedWork W2069049662 @default.
- W2994459744 hasRelatedWork W2106988383 @default.
- W2994459744 hasRelatedWork W2107975152 @default.
- W2994459744 hasRelatedWork W2164317961 @default.
- W2994459744 hasRelatedWork W2168973586 @default.
- W2994459744 hasRelatedWork W2994459744 @default.
- W2994459744 isParatext "false" @default.
- W2994459744 isRetracted "false" @default.
- W2994459744 magId "2994459744" @default.
- W2994459744 workType "article" @default.