Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994472917> ?p ?o ?g. }
- W2994472917 abstract "In this paper, we present a deep learning framework applied for acoustic scene classification (ASC) recognizing the environmental sounds. Since an audio scene related to a given location potentially contains numerous sound events, only few of these events supply helpful information on the scene, which makes the acoustic scene classification task become a very complex problem. To confront this challenge, we suggest a novel architecture consisting of two basic processes. The front-end process approaches a spectrogram feature, using Gammatone filters. Regarding the back-end classification, we propose a novel convolutional neural network (CNN) architecture that enforces the network deeply learning middle convolutional layers. Our experiments conducted over DCASE2016 task 1A dataset offer the highest classification accuracy of 84.4% as compared to 72.5% of DCASE2016 baseline." @default.
- W2994472917 created "2019-12-13" @default.
- W2994472917 creator A5011525161 @default.
- W2994472917 creator A5032081332 @default.
- W2994472917 creator A5041644424 @default.
- W2994472917 creator A5044883724 @default.
- W2994472917 creator A5075250567 @default.
- W2994472917 date "2019-10-01" @default.
- W2994472917 modified "2023-10-16" @default.
- W2994472917 title "Acoustic Scene Classification Using A Deeper Training Method for Convolution Neural Network" @default.
- W2994472917 cites W1966976522 @default.
- W2994472917 cites W1987011838 @default.
- W2994472917 cites W2006546815 @default.
- W2994472917 cites W2008415856 @default.
- W2994472917 cites W2009674825 @default.
- W2994472917 cites W2048174296 @default.
- W2994472917 cites W2095147901 @default.
- W2994472917 cites W2123843894 @default.
- W2994472917 cites W2137343183 @default.
- W2994472917 cites W2137561966 @default.
- W2994472917 cites W2160170050 @default.
- W2994472917 cites W2163605009 @default.
- W2994472917 cites W2186582651 @default.
- W2994472917 cites W2395750323 @default.
- W2994472917 cites W2398456099 @default.
- W2994472917 cites W2464644320 @default.
- W2994472917 cites W2566935005 @default.
- W2994472917 cites W2626445779 @default.
- W2994472917 cites W2774918761 @default.
- W2994472917 cites W2775019026 @default.
- W2994472917 cites W2775794021 @default.
- W2994472917 cites W2949117887 @default.
- W2994472917 cites W3046881645 @default.
- W2994472917 cites W3092213245 @default.
- W2994472917 cites W3098357269 @default.
- W2994472917 doi "https://doi.org/10.1109/isee2.2019.8921365" @default.
- W2994472917 hasPublicationYear "2019" @default.
- W2994472917 type Work @default.
- W2994472917 sameAs 2994472917 @default.
- W2994472917 citedByCount "0" @default.
- W2994472917 crossrefType "proceedings-article" @default.
- W2994472917 hasAuthorship W2994472917A5011525161 @default.
- W2994472917 hasAuthorship W2994472917A5032081332 @default.
- W2994472917 hasAuthorship W2994472917A5041644424 @default.
- W2994472917 hasAuthorship W2994472917A5044883724 @default.
- W2994472917 hasAuthorship W2994472917A5075250567 @default.
- W2994472917 hasConcept C108583219 @default.
- W2994472917 hasConcept C111919701 @default.
- W2994472917 hasConcept C123657996 @default.
- W2994472917 hasConcept C127413603 @default.
- W2994472917 hasConcept C138885662 @default.
- W2994472917 hasConcept C142362112 @default.
- W2994472917 hasConcept C153180895 @default.
- W2994472917 hasConcept C153349607 @default.
- W2994472917 hasConcept C154945302 @default.
- W2994472917 hasConcept C201995342 @default.
- W2994472917 hasConcept C2776401178 @default.
- W2994472917 hasConcept C2780451532 @default.
- W2994472917 hasConcept C28490314 @default.
- W2994472917 hasConcept C41008148 @default.
- W2994472917 hasConcept C41895202 @default.
- W2994472917 hasConcept C45273575 @default.
- W2994472917 hasConcept C45347329 @default.
- W2994472917 hasConcept C50644808 @default.
- W2994472917 hasConcept C52622490 @default.
- W2994472917 hasConcept C81363708 @default.
- W2994472917 hasConcept C98045186 @default.
- W2994472917 hasConceptScore W2994472917C108583219 @default.
- W2994472917 hasConceptScore W2994472917C111919701 @default.
- W2994472917 hasConceptScore W2994472917C123657996 @default.
- W2994472917 hasConceptScore W2994472917C127413603 @default.
- W2994472917 hasConceptScore W2994472917C138885662 @default.
- W2994472917 hasConceptScore W2994472917C142362112 @default.
- W2994472917 hasConceptScore W2994472917C153180895 @default.
- W2994472917 hasConceptScore W2994472917C153349607 @default.
- W2994472917 hasConceptScore W2994472917C154945302 @default.
- W2994472917 hasConceptScore W2994472917C201995342 @default.
- W2994472917 hasConceptScore W2994472917C2776401178 @default.
- W2994472917 hasConceptScore W2994472917C2780451532 @default.
- W2994472917 hasConceptScore W2994472917C28490314 @default.
- W2994472917 hasConceptScore W2994472917C41008148 @default.
- W2994472917 hasConceptScore W2994472917C41895202 @default.
- W2994472917 hasConceptScore W2994472917C45273575 @default.
- W2994472917 hasConceptScore W2994472917C45347329 @default.
- W2994472917 hasConceptScore W2994472917C50644808 @default.
- W2994472917 hasConceptScore W2994472917C52622490 @default.
- W2994472917 hasConceptScore W2994472917C81363708 @default.
- W2994472917 hasConceptScore W2994472917C98045186 @default.
- W2994472917 hasLocation W29944729171 @default.
- W2994472917 hasOpenAccess W2994472917 @default.
- W2994472917 hasPrimaryLocation W29944729171 @default.
- W2994472917 hasRelatedWork W11553578 @default.
- W2994472917 hasRelatedWork W1383942 @default.
- W2994472917 hasRelatedWork W14516383 @default.
- W2994472917 hasRelatedWork W3647669 @default.
- W2994472917 hasRelatedWork W4661805 @default.
- W2994472917 hasRelatedWork W5319273 @default.
- W2994472917 hasRelatedWork W701070 @default.
- W2994472917 hasRelatedWork W8656678 @default.
- W2994472917 hasRelatedWork W9190101 @default.