Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994566173> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2994566173 abstract "Each year, millions of people lose their lives to fatal road accidents. An ever increasing proportion of these accidents is due to distracted driving caused by co-passengers and mobile devices. Thus, there is a growing need for a system which detects the distracted driver in real-time and raises a warning alarm. To this end, we present a simple and robust architecture using foreground extraction and a Convolutional Neural Network (CNN). Our ConvNet model has significantly fewer parameters (0.5M) than state-of-the-art models. Detailed experimental evaluation on two publicly available datasets, the State Farm Distracted Driver Detection dataset (SFD3) and the AUC Distracted Driver dataset (AUCD2), confirm that our model either outperforms or compares with the models proposed so far on both the datasets, with a test accuracy of 98.48% and 95.64%, respectively. Our experiments also suggest that incorporating additional features such as the posture of a driver through foreground extraction using GrabCut substantially improves the performance of our model. Furthermore, our ConvNet is capable of detecting real-time distractions without any parallel processing." @default.
- W2994566173 created "2019-12-13" @default.
- W2994566173 creator A5032798300 @default.
- W2994566173 creator A5054810453 @default.
- W2994566173 creator A5072203134 @default.
- W2994566173 creator A5079357056 @default.
- W2994566173 creator A5082962427 @default.
- W2994566173 date "2019-09-01" @default.
- W2994566173 modified "2023-09-29" @default.
- W2994566173 title "Are You Paying Attention? Detecting Distracted Driving in Real-Time" @default.
- W2994566173 cites W1965455921 @default.
- W2994566173 cites W2070906768 @default.
- W2994566173 cites W2124351162 @default.
- W2994566173 cites W2204605857 @default.
- W2994566173 cites W2324736398 @default.
- W2994566173 cites W2343672207 @default.
- W2994566173 cites W2365919995 @default.
- W2994566173 cites W2617632090 @default.
- W2994566173 cites W2733839197 @default.
- W2994566173 cites W2750725664 @default.
- W2994566173 cites W2774982578 @default.
- W2994566173 cites W2889223243 @default.
- W2994566173 cites W2890157139 @default.
- W2994566173 cites W2895866857 @default.
- W2994566173 cites W2897621597 @default.
- W2994566173 cites W2910267084 @default.
- W2994566173 cites W2951713285 @default.
- W2994566173 cites W2963150697 @default.
- W2994566173 cites W2963435138 @default.
- W2994566173 cites W2963633722 @default.
- W2994566173 doi "https://doi.org/10.1109/bigmm.2019.00-28" @default.
- W2994566173 hasPublicationYear "2019" @default.
- W2994566173 type Work @default.
- W2994566173 sameAs 2994566173 @default.
- W2994566173 citedByCount "20" @default.
- W2994566173 countsByYear W29945661732020 @default.
- W2994566173 countsByYear W29945661732021 @default.
- W2994566173 countsByYear W29945661732022 @default.
- W2994566173 countsByYear W29945661732023 @default.
- W2994566173 crossrefType "proceedings-article" @default.
- W2994566173 hasAuthorship W2994566173A5032798300 @default.
- W2994566173 hasAuthorship W2994566173A5054810453 @default.
- W2994566173 hasAuthorship W2994566173A5072203134 @default.
- W2994566173 hasAuthorship W2994566173A5079357056 @default.
- W2994566173 hasAuthorship W2994566173A5082962427 @default.
- W2994566173 hasConcept C119857082 @default.
- W2994566173 hasConcept C127413603 @default.
- W2994566173 hasConcept C146978453 @default.
- W2994566173 hasConcept C153180895 @default.
- W2994566173 hasConcept C154945302 @default.
- W2994566173 hasConcept C15744967 @default.
- W2994566173 hasConcept C169760540 @default.
- W2994566173 hasConcept C2776378700 @default.
- W2994566173 hasConcept C2776465824 @default.
- W2994566173 hasConcept C2776836416 @default.
- W2994566173 hasConcept C2779119184 @default.
- W2994566173 hasConcept C41008148 @default.
- W2994566173 hasConcept C52622490 @default.
- W2994566173 hasConcept C79403827 @default.
- W2994566173 hasConcept C81363708 @default.
- W2994566173 hasConceptScore W2994566173C119857082 @default.
- W2994566173 hasConceptScore W2994566173C127413603 @default.
- W2994566173 hasConceptScore W2994566173C146978453 @default.
- W2994566173 hasConceptScore W2994566173C153180895 @default.
- W2994566173 hasConceptScore W2994566173C154945302 @default.
- W2994566173 hasConceptScore W2994566173C15744967 @default.
- W2994566173 hasConceptScore W2994566173C169760540 @default.
- W2994566173 hasConceptScore W2994566173C2776378700 @default.
- W2994566173 hasConceptScore W2994566173C2776465824 @default.
- W2994566173 hasConceptScore W2994566173C2776836416 @default.
- W2994566173 hasConceptScore W2994566173C2779119184 @default.
- W2994566173 hasConceptScore W2994566173C41008148 @default.
- W2994566173 hasConceptScore W2994566173C52622490 @default.
- W2994566173 hasConceptScore W2994566173C79403827 @default.
- W2994566173 hasConceptScore W2994566173C81363708 @default.
- W2994566173 hasLocation W29945661731 @default.
- W2994566173 hasOpenAccess W2994566173 @default.
- W2994566173 hasPrimaryLocation W29945661731 @default.
- W2994566173 hasRelatedWork W2146076056 @default.
- W2994566173 hasRelatedWork W2743351574 @default.
- W2994566173 hasRelatedWork W2811390910 @default.
- W2994566173 hasRelatedWork W2965056781 @default.
- W2994566173 hasRelatedWork W3158560638 @default.
- W2994566173 hasRelatedWork W3194373972 @default.
- W2994566173 hasRelatedWork W4224111438 @default.
- W2994566173 hasRelatedWork W4226180125 @default.
- W2994566173 hasRelatedWork W4287776258 @default.
- W2994566173 hasRelatedWork W4312376745 @default.
- W2994566173 isParatext "false" @default.
- W2994566173 isRetracted "false" @default.
- W2994566173 magId "2994566173" @default.
- W2994566173 workType "article" @default.