Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994603684> ?p ?o ?g. }
- W2994603684 endingPage "3487" @default.
- W2994603684 startingPage "3475" @default.
- W2994603684 abstract "Colloidal particles with a spherical shape and diameters in the range of 0.01-1 μm have been a subject of extensive research, with applications in areas such as photonics, electronics, catalysis, drug delivery, and medicine. For most of these applications, it is of critical importance to achieve monodispersity for the size while expanding the diversity in terms of structure and composition. The uniformity in size allows one to establish rigorous correlations between this parameter and the physicochemical properties of the colloidal particles while ensuring experimental repeatability and measurement accuracy. On the other hand, the diversity in structure and composition offers additional handles for tailoring the properties. By switching from the conventional plain, solid structure to a core-shell, hollow, porous, or Janus structure, it offers immediate advantages and creates new opportunities, especially in the context of self-assembly, encapsulation, and controlled release. As for composition, monodispersed colloidal spheres were traditionally limited to amorphous materials such as polystyrene and silica. For metals and semiconducting materials, which are more valuable to applications in photonics, electronics, and catalysis, they tend to crystallize and thus grow anisotropically into nonspherical shapes, especially when their sizes pass 0.1 μm. Taken together, it is no wonder why chemical synthesis of monodispersed colloidal spheres has been a constant theme of research in areas such as colloidal science, materials chemistry, materials science, and soft matter. In this Account, we summarize our efforts over the past two decades in developing solution-phase methods for the facile synthesis of colloidal spheres that are uniform in size, together with a broad range of compositions (including metals and semiconductors) and structures (e.g., solid, core-shell, hollow, porous, and Janus, among others). We start with the synthesis of monodispersed colloidal spheres made of semiconductors, metals with low melting points, and precious metals. Through chemical reactions, these colloidal spheres can be transformed into core-shell or hollow structures with new compositions and properties. Next, we discuss the synthesis of colloidal spheres with a Janus structure while taking a pseudospherical shape. Specifically, metal-polymer hybrid particles composed of one metal nanoparticle partially embedded in the surface of a polymer sphere can be produced through precipitation polymerization in the presence of metal seed. With these Janus particles serving as templates, other types of Janus structures such as hollow spheres with a single hole in the surface can be obtained via site-selected deposition. Alternatively, such hollow spheres can be fabricated through a physical transformation process that involves swelling of polymer spheres, followed by freeze-drying. All these synthesis and transformation processes are solution-based, offering flexibility and potential for large-scale production. At the end, we highlight some of the applications enabled by these colloidal spheres, including fabrication of photonic devices, encapsulation, and controlled release for nanomedicine." @default.
- W2994603684 created "2019-12-13" @default.
- W2994603684 creator A5020973088 @default.
- W2994603684 creator A5041556229 @default.
- W2994603684 creator A5044219595 @default.
- W2994603684 creator A5076306919 @default.
- W2994603684 date "2019-12-03" @default.
- W2994603684 modified "2023-09-23" @default.
- W2994603684 title "Synthesis, Transformation, and Utilization of Monodispersed Colloidal Spheres" @default.
- W2994603684 cites W1965581922 @default.
- W2994603684 cites W1996632440 @default.
- W2994603684 cites W2001280311 @default.
- W2994603684 cites W2002734629 @default.
- W2994603684 cites W2005361656 @default.
- W2994603684 cites W2006920668 @default.
- W2994603684 cites W2009274728 @default.
- W2994603684 cites W2018255806 @default.
- W2994603684 cites W2018446156 @default.
- W2994603684 cites W2039720442 @default.
- W2994603684 cites W2042079908 @default.
- W2994603684 cites W2046127028 @default.
- W2994603684 cites W2053285558 @default.
- W2994603684 cites W2055880090 @default.
- W2994603684 cites W2057976104 @default.
- W2994603684 cites W2067674158 @default.
- W2994603684 cites W2068670668 @default.
- W2994603684 cites W2068880672 @default.
- W2994603684 cites W2070121703 @default.
- W2994603684 cites W2070300772 @default.
- W2994603684 cites W2074163630 @default.
- W2994603684 cites W2094135077 @default.
- W2994603684 cites W2103370171 @default.
- W2994603684 cites W2106338901 @default.
- W2994603684 cites W2108890790 @default.
- W2994603684 cites W2110252383 @default.
- W2994603684 cites W2117292967 @default.
- W2994603684 cites W2120317572 @default.
- W2994603684 cites W2131426448 @default.
- W2994603684 cites W2133913334 @default.
- W2994603684 cites W2140253282 @default.
- W2994603684 cites W2147385559 @default.
- W2994603684 cites W2149865841 @default.
- W2994603684 cites W2156039205 @default.
- W2994603684 cites W2159058880 @default.
- W2994603684 cites W2189078301 @default.
- W2994603684 cites W2195884409 @default.
- W2994603684 cites W2332352735 @default.
- W2994603684 cites W2470199101 @default.
- W2994603684 cites W2561188059 @default.
- W2994603684 cites W2729252536 @default.
- W2994603684 cites W2783380366 @default.
- W2994603684 cites W2921880392 @default.
- W2994603684 cites W2934266467 @default.
- W2994603684 cites W2970542391 @default.
- W2994603684 cites W3092217728 @default.
- W2994603684 cites W4238637888 @default.
- W2994603684 cites W4253385397 @default.
- W2994603684 cites W4255922903 @default.
- W2994603684 doi "https://doi.org/10.1021/acs.accounts.9b00490" @default.
- W2994603684 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6942689" @default.
- W2994603684 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31793763" @default.
- W2994603684 hasPublicationYear "2019" @default.
- W2994603684 type Work @default.
- W2994603684 sameAs 2994603684 @default.
- W2994603684 citedByCount "43" @default.
- W2994603684 countsByYear W29946036842020 @default.
- W2994603684 countsByYear W29946036842021 @default.
- W2994603684 countsByYear W29946036842022 @default.
- W2994603684 countsByYear W29946036842023 @default.
- W2994603684 crossrefType "journal-article" @default.
- W2994603684 hasAuthorship W2994603684A5020973088 @default.
- W2994603684 hasAuthorship W2994603684A5041556229 @default.
- W2994603684 hasAuthorship W2994603684A5044219595 @default.
- W2994603684 hasAuthorship W2994603684A5076306919 @default.
- W2994603684 hasConcept C104317684 @default.
- W2994603684 hasConcept C121332964 @default.
- W2994603684 hasConcept C127413603 @default.
- W2994603684 hasConcept C1276947 @default.
- W2994603684 hasConcept C171250308 @default.
- W2994603684 hasConcept C185592680 @default.
- W2994603684 hasConcept C192562407 @default.
- W2994603684 hasConcept C197445215 @default.
- W2994603684 hasConcept C204241405 @default.
- W2994603684 hasConcept C42360764 @default.
- W2994603684 hasConcept C55493867 @default.
- W2994603684 hasConcept C59789625 @default.
- W2994603684 hasConcept C72422203 @default.
- W2994603684 hasConceptScore W2994603684C104317684 @default.
- W2994603684 hasConceptScore W2994603684C121332964 @default.
- W2994603684 hasConceptScore W2994603684C127413603 @default.
- W2994603684 hasConceptScore W2994603684C1276947 @default.
- W2994603684 hasConceptScore W2994603684C171250308 @default.
- W2994603684 hasConceptScore W2994603684C185592680 @default.
- W2994603684 hasConceptScore W2994603684C192562407 @default.
- W2994603684 hasConceptScore W2994603684C197445215 @default.
- W2994603684 hasConceptScore W2994603684C204241405 @default.
- W2994603684 hasConceptScore W2994603684C42360764 @default.
- W2994603684 hasConceptScore W2994603684C55493867 @default.