Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994642008> ?p ?o ?g. }
- W2994642008 abstract "Bayesian learning is ubiquitous for implementing classification and regression tasks, however, it is accompanied by computationally intractable limitations when the feature spaces become extremely large. Aiming to solve this problem, we develop a quantum bayesian learning framework of the restricted Boltzmann machine in the quantum-enhanced feature spaces. Our framework provides the encoding phase to map the real data and Boltzmann weight onto the quantum feature spaces and the training phase to learn an optimal inference function. Specifically, the training phase provides a physical quantity to measure the posterior distribution in quantum feature spaces, and this measure is utilized to design the quantum maximum a posterior (QMAP) algorithm and the quantum predictive distribution estimator (QPDE). It is shown that both quantum algorithms achieve exponential speed-up over their classical counterparts. Furthermore, it is interesting to note that our framework can figure out the classical bayesian learning tasks, i.e. processing the classical data and outputting corresponding classical labels. And a simulation, which is performed on an open-source software framework for quantum computing, illustrates that our algorithms show almost the same classification performance compared to their classical counterparts. Noting that the proposed quantum algorithms utilize the shallow circuit, our work is expected to be implemented on the noisy intermediate-scale quantum (NISQ) devices, and is one of the promising candidates to achieve quantum supremacy." @default.
- W2994642008 created "2019-12-26" @default.
- W2994642008 creator A5001308300 @default.
- W2994642008 creator A5034066515 @default.
- W2994642008 creator A5040230786 @default.
- W2994642008 creator A5050423562 @default.
- W2994642008 creator A5071607720 @default.
- W2994642008 date "2019-12-20" @default.
- W2994642008 modified "2023-09-24" @default.
- W2994642008 title "Bayesian machine learning for Boltzmann machine in quantum-enhanced feature spaces" @default.
- W2994642008 cites W1492999010 @default.
- W2994642008 cites W1568345435 @default.
- W2994642008 cites W1817561967 @default.
- W2994642008 cites W1976050108 @default.
- W2994642008 cites W1988369744 @default.
- W2994642008 cites W199424061 @default.
- W2994642008 cites W2084652510 @default.
- W2994642008 cites W2097174474 @default.
- W2994642008 cites W2103956991 @default.
- W2994642008 cites W2124289529 @default.
- W2994642008 cites W2161685427 @default.
- W2994642008 cites W2297565774 @default.
- W2994642008 cites W2412592673 @default.
- W2994642008 cites W2489886790 @default.
- W2994642008 cites W2607911764 @default.
- W2994642008 cites W2740347106 @default.
- W2994642008 cites W2755255888 @default.
- W2994642008 cites W2774424698 @default.
- W2994642008 cites W2786434003 @default.
- W2994642008 cites W2790388700 @default.
- W2994642008 cites W2792946961 @default.
- W2994642008 cites W2798434869 @default.
- W2994642008 cites W2907889276 @default.
- W2994642008 cites W2947622185 @default.
- W2994642008 cites W2963721130 @default.
- W2994642008 cites W2971134816 @default.
- W2994642008 cites W3101872593 @default.
- W2994642008 cites W3106521501 @default.
- W2994642008 cites W3111297213 @default.
- W2994642008 cites W3217033513 @default.
- W2994642008 cites W752591105 @default.
- W2994642008 doi "https://doi.org/10.48550/arxiv.1912.10857" @default.
- W2994642008 hasPublicationYear "2019" @default.
- W2994642008 type Work @default.
- W2994642008 sameAs 2994642008 @default.
- W2994642008 citedByCount "2" @default.
- W2994642008 countsByYear W29946420082020 @default.
- W2994642008 countsByYear W29946420082021 @default.
- W2994642008 crossrefType "posted-content" @default.
- W2994642008 hasAuthorship W2994642008A5001308300 @default.
- W2994642008 hasAuthorship W2994642008A5034066515 @default.
- W2994642008 hasAuthorship W2994642008A5040230786 @default.
- W2994642008 hasAuthorship W2994642008A5050423562 @default.
- W2994642008 hasAuthorship W2994642008A5071607720 @default.
- W2994642008 hasBestOaLocation W29946420081 @default.
- W2994642008 hasConcept C105795698 @default.
- W2994642008 hasConcept C107673813 @default.
- W2994642008 hasConcept C108583219 @default.
- W2994642008 hasConcept C11413529 @default.
- W2994642008 hasConcept C119857082 @default.
- W2994642008 hasConcept C121332964 @default.
- W2994642008 hasConcept C137019171 @default.
- W2994642008 hasConcept C138885662 @default.
- W2994642008 hasConcept C154945302 @default.
- W2994642008 hasConcept C160234255 @default.
- W2994642008 hasConcept C185429906 @default.
- W2994642008 hasConcept C192122513 @default.
- W2994642008 hasConcept C192576344 @default.
- W2994642008 hasConcept C199354608 @default.
- W2994642008 hasConcept C2776401178 @default.
- W2994642008 hasConcept C2779094486 @default.
- W2994642008 hasConcept C2780009758 @default.
- W2994642008 hasConcept C33923547 @default.
- W2994642008 hasConcept C41008148 @default.
- W2994642008 hasConcept C41895202 @default.
- W2994642008 hasConcept C51003876 @default.
- W2994642008 hasConcept C58053490 @default.
- W2994642008 hasConcept C62520636 @default.
- W2994642008 hasConcept C77088390 @default.
- W2994642008 hasConcept C84114770 @default.
- W2994642008 hasConceptScore W2994642008C105795698 @default.
- W2994642008 hasConceptScore W2994642008C107673813 @default.
- W2994642008 hasConceptScore W2994642008C108583219 @default.
- W2994642008 hasConceptScore W2994642008C11413529 @default.
- W2994642008 hasConceptScore W2994642008C119857082 @default.
- W2994642008 hasConceptScore W2994642008C121332964 @default.
- W2994642008 hasConceptScore W2994642008C137019171 @default.
- W2994642008 hasConceptScore W2994642008C138885662 @default.
- W2994642008 hasConceptScore W2994642008C154945302 @default.
- W2994642008 hasConceptScore W2994642008C160234255 @default.
- W2994642008 hasConceptScore W2994642008C185429906 @default.
- W2994642008 hasConceptScore W2994642008C192122513 @default.
- W2994642008 hasConceptScore W2994642008C192576344 @default.
- W2994642008 hasConceptScore W2994642008C199354608 @default.
- W2994642008 hasConceptScore W2994642008C2776401178 @default.
- W2994642008 hasConceptScore W2994642008C2779094486 @default.
- W2994642008 hasConceptScore W2994642008C2780009758 @default.
- W2994642008 hasConceptScore W2994642008C33923547 @default.
- W2994642008 hasConceptScore W2994642008C41008148 @default.
- W2994642008 hasConceptScore W2994642008C41895202 @default.