Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994661265> ?p ?o ?g. }
- W2994661265 abstract "Image steganalysis is a special binary classification problem that aims to classify natural cover images and suspected stego images which are the results of embedding very weak secret message signals into covers. How to effectively suppress cover image content and thus make the classification of cover images and stego images easier is the key of this task. Recent researches show that Convolutional Neural Networks (CNN) are very effective to detect steganography by learning discriminative features between cover images and their stegos. Several deep CNN models have been proposed via incorporating domain knowledge of image steganography/steganalysis into the design of the network and achieve state of the art performance on standard database. Following such direction, we propose a novel model called Cover Image Suppression Network (CIS-Net), which improves the performance of spatial image steganalysis by suppressing cover image content as much as possible in model learning. Two novel layers, the Single-value Truncation Layer (STL) and Sub-linear Pooling Layer (SPL), are proposed in this work. Specifically, STL truncates input values into a same threshold when they are out of a predefined interval. Theoretically, we have proved that STL can reduce the variance of input feature map without deteriorating useful information. For SPL, it utilizes sub-linear power function to suppress large valued elements introduced by cover image contents and aggregates weak embedded signals via average pooling. Extensive experiments demonstrate the proposed network equipped with STL and SPL achieves better performance than rich model classifiers and existing CNN models on challenging steganographic algorithms." @default.
- W2994661265 created "2019-12-26" @default.
- W2994661265 creator A5021293751 @default.
- W2994661265 creator A5041387859 @default.
- W2994661265 creator A5051601236 @default.
- W2994661265 creator A5086801574 @default.
- W2994661265 date "2019-12-13" @default.
- W2994661265 modified "2023-10-16" @default.
- W2994661265 title "CIS-Net: A Novel CNN Model for Spatial Image Steganalysis via Cover Image Suppression" @default.
- W2994661265 cites W1677182931 @default.
- W2994661265 cites W1885185971 @default.
- W2994661265 cites W1976570511 @default.
- W2994661265 cites W2009130368 @default.
- W2994661265 cites W2040299224 @default.
- W2994661265 cites W2046180645 @default.
- W2994661265 cites W2049562124 @default.
- W2994661265 cites W2052007184 @default.
- W2994661265 cites W2081564928 @default.
- W2994661265 cites W2096156898 @default.
- W2994661265 cites W2099471712 @default.
- W2994661265 cites W2106663508 @default.
- W2994661265 cites W2117500881 @default.
- W2994661265 cites W2118296934 @default.
- W2994661265 cites W2134527668 @default.
- W2994661265 cites W2139643804 @default.
- W2994661265 cites W2151346626 @default.
- W2994661265 cites W2154026545 @default.
- W2994661265 cites W2158162781 @default.
- W2994661265 cites W2158320630 @default.
- W2994661265 cites W2170311913 @default.
- W2994661265 cites W2170598445 @default.
- W2994661265 cites W2194775991 @default.
- W2994661265 cites W22271197 @default.
- W2994661265 cites W2236688737 @default.
- W2994661265 cites W2295107390 @default.
- W2994661265 cites W2296073425 @default.
- W2994661265 cites W2322622188 @default.
- W2994661265 cites W2508457857 @default.
- W2994661265 cites W2538511122 @default.
- W2994661265 cites W2542290803 @default.
- W2994661265 cites W2565257220 @default.
- W2994661265 cites W2588463901 @default.
- W2994661265 cites W2610979719 @default.
- W2994661265 cites W2621048556 @default.
- W2994661265 cites W2735904389 @default.
- W2994661265 cites W2752069020 @default.
- W2994661265 cites W2775795276 @default.
- W2994661265 cites W2791370475 @default.
- W2994661265 cites W2809766277 @default.
- W2994661265 cites W2892948265 @default.
- W2994661265 cites W2960108949 @default.
- W2994661265 cites W2962835968 @default.
- W2994661265 cites W2963682422 @default.
- W2994661265 cites W2963840672 @default.
- W2994661265 cites W2963881378 @default.
- W2994661265 cites W2964121744 @default.
- W2994661265 cites W2964154124 @default.
- W2994661265 cites W2964275061 @default.
- W2994661265 cites W2969585684 @default.
- W2994661265 cites W2522750342 @default.
- W2994661265 doi "https://doi.org/10.48550/arxiv.1912.06540" @default.
- W2994661265 hasPublicationYear "2019" @default.
- W2994661265 type Work @default.
- W2994661265 sameAs 2994661265 @default.
- W2994661265 citedByCount "0" @default.
- W2994661265 crossrefType "posted-content" @default.
- W2994661265 hasAuthorship W2994661265A5021293751 @default.
- W2994661265 hasAuthorship W2994661265A5041387859 @default.
- W2994661265 hasAuthorship W2994661265A5051601236 @default.
- W2994661265 hasAuthorship W2994661265A5086801574 @default.
- W2994661265 hasBestOaLocation W29946612651 @default.
- W2994661265 hasConcept C107368093 @default.
- W2994661265 hasConcept C108801101 @default.
- W2994661265 hasConcept C115961682 @default.
- W2994661265 hasConcept C127413603 @default.
- W2994661265 hasConcept C138885662 @default.
- W2994661265 hasConcept C153180895 @default.
- W2994661265 hasConcept C154945302 @default.
- W2994661265 hasConcept C2776401178 @default.
- W2994661265 hasConcept C2780428219 @default.
- W2994661265 hasConcept C41008148 @default.
- W2994661265 hasConcept C41608201 @default.
- W2994661265 hasConcept C41895202 @default.
- W2994661265 hasConcept C70437156 @default.
- W2994661265 hasConcept C78519656 @default.
- W2994661265 hasConcept C81363708 @default.
- W2994661265 hasConcept C97931131 @default.
- W2994661265 hasConceptScore W2994661265C107368093 @default.
- W2994661265 hasConceptScore W2994661265C108801101 @default.
- W2994661265 hasConceptScore W2994661265C115961682 @default.
- W2994661265 hasConceptScore W2994661265C127413603 @default.
- W2994661265 hasConceptScore W2994661265C138885662 @default.
- W2994661265 hasConceptScore W2994661265C153180895 @default.
- W2994661265 hasConceptScore W2994661265C154945302 @default.
- W2994661265 hasConceptScore W2994661265C2776401178 @default.
- W2994661265 hasConceptScore W2994661265C2780428219 @default.
- W2994661265 hasConceptScore W2994661265C41008148 @default.
- W2994661265 hasConceptScore W2994661265C41608201 @default.
- W2994661265 hasConceptScore W2994661265C41895202 @default.
- W2994661265 hasConceptScore W2994661265C70437156 @default.