Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994710040> ?p ?o ?g. }
- W2994710040 endingPage "104499" @default.
- W2994710040 startingPage "104499" @default.
- W2994710040 abstract "Rare Earth Elements (REE) are nowadays considered critical raw materials due to their increasing use in modern industry and their shortage of supply. Acid mine drainage (AMD) contains REE concentrations several orders of magnitude higher than the rest of continental and marine waters, and the sludge from its treatment may become a supplementary source of REE. Schwertmannite, a Fe(III)-sulfate-hydroxide is the most common mineral precipitated from AMD and a main constituent of the neutralization sludge. The objective of this work is to study the mechanism of REE retention in synthetic schwertmannite and to predict the REE behavior in a column experiment mimicking an AMD passive remediation system. Suspensions of synthetic schwertmannite in sulfate solutions show that Y and the lanthanides are effectively sorbed at pH values higher than 4.5, and sorption is complete at pH values higher than 6.5. The experimental partition coefficients clearly show a preferential enrichment of heavy REE in the solid phase. Unlike the rest of the REE, Sc sorption occurred at a lower pH, from 3 to 5. The experimental results have been described with a non-electrostatic surface complexation model in which the aqueous complex MSO4+ exchanges with two H+ from the surface of schwertmannite, forming a bidentate surface complex, (XO)2MSO4-. Scandium sorption was also accurately predicted with the addition of a second bidentate surface complex, (XO)2MOH. The equilibrium constants for REE sorption on schwertmannite calculated in the present work, together with those for REE sorption on basaluminite (Lozano et al., 2019, GCA, 258, 50–62) were used to model the behavior of different REE observed in the pore water and solid of a column experiment. Schwertmannite and basaluminite were the main solid phases formed due to the progression of the neutralization. First schwertmannite precipitated at pH below 4 and then basaluminite precipitated at pH above 4. Both minerals can sorb REE in a similar pH range. However, since Y and the lanthanides sorbed at pH values higher than 5, their sorption only occurred on basaluminite. In contrast, the Sc sorption edge extended from pH 3 to 5 and Sc partially sorbed on schwertmannite. As a practical consequence, REE preferentially accumulated in the basaluminite residue of AMD neutralization systems, but a minor fraction of Sc can be retained in the schwertmannite waste." @default.
- W2994710040 created "2019-12-26" @default.
- W2994710040 creator A5008179229 @default.
- W2994710040 creator A5062239258 @default.
- W2994710040 creator A5076099223 @default.
- W2994710040 date "2020-02-01" @default.
- W2994710040 modified "2023-10-12" @default.
- W2994710040 title "Sorption of rare earth elements on schwertmannite and their mobility in acid mine drainage treatments" @default.
- W2994710040 cites W111766145 @default.
- W2994710040 cites W1599324324 @default.
- W2994710040 cites W1963549839 @default.
- W2994710040 cites W1965122341 @default.
- W2994710040 cites W1967192702 @default.
- W2994710040 cites W1967846392 @default.
- W2994710040 cites W1968486409 @default.
- W2994710040 cites W1968867538 @default.
- W2994710040 cites W1972284414 @default.
- W2994710040 cites W1985928844 @default.
- W2994710040 cites W1986829858 @default.
- W2994710040 cites W1987261718 @default.
- W2994710040 cites W1994109027 @default.
- W2994710040 cites W1995332806 @default.
- W2994710040 cites W2000623060 @default.
- W2994710040 cites W2000749938 @default.
- W2994710040 cites W2002512458 @default.
- W2994710040 cites W2003461155 @default.
- W2994710040 cites W2006348957 @default.
- W2994710040 cites W2010671013 @default.
- W2994710040 cites W2011367341 @default.
- W2994710040 cites W2011989287 @default.
- W2994710040 cites W2012546576 @default.
- W2994710040 cites W2016360968 @default.
- W2994710040 cites W2016797543 @default.
- W2994710040 cites W2028264794 @default.
- W2994710040 cites W2028508356 @default.
- W2994710040 cites W2028903816 @default.
- W2994710040 cites W2030153086 @default.
- W2994710040 cites W2031204284 @default.
- W2994710040 cites W2032136888 @default.
- W2994710040 cites W2033473502 @default.
- W2994710040 cites W2038363480 @default.
- W2994710040 cites W2038475470 @default.
- W2994710040 cites W2041336258 @default.
- W2994710040 cites W2047859402 @default.
- W2994710040 cites W2052614005 @default.
- W2994710040 cites W2052935307 @default.
- W2994710040 cites W2054005685 @default.
- W2994710040 cites W2055070367 @default.
- W2994710040 cites W2063069623 @default.
- W2994710040 cites W2067134437 @default.
- W2994710040 cites W2070228570 @default.
- W2994710040 cites W2071172756 @default.
- W2994710040 cites W2072330998 @default.
- W2994710040 cites W2074227494 @default.
- W2994710040 cites W2074751239 @default.
- W2994710040 cites W2074898106 @default.
- W2994710040 cites W2078410096 @default.
- W2994710040 cites W2079402407 @default.
- W2994710040 cites W2080043646 @default.
- W2994710040 cites W2080712293 @default.
- W2994710040 cites W2081999562 @default.
- W2994710040 cites W2082979737 @default.
- W2994710040 cites W2086426699 @default.
- W2994710040 cites W2089320030 @default.
- W2994710040 cites W2091170540 @default.
- W2994710040 cites W2096661048 @default.
- W2994710040 cites W2111312165 @default.
- W2994710040 cites W2111473359 @default.
- W2994710040 cites W2121536019 @default.
- W2994710040 cites W2144971286 @default.
- W2994710040 cites W2264185303 @default.
- W2994710040 cites W2316353151 @default.
- W2994710040 cites W2317189145 @default.
- W2994710040 cites W2320789531 @default.
- W2994710040 cites W2471617027 @default.
- W2994710040 cites W2504124475 @default.
- W2994710040 cites W2579811686 @default.
- W2994710040 cites W2765287401 @default.
- W2994710040 cites W2807983685 @default.
- W2994710040 cites W2945111903 @default.
- W2994710040 cites W2945981135 @default.
- W2994710040 cites W2949504844 @default.
- W2994710040 cites W2969273146 @default.
- W2994710040 cites W4237409564 @default.
- W2994710040 cites W51113138 @default.
- W2994710040 doi "https://doi.org/10.1016/j.apgeochem.2019.104499" @default.
- W2994710040 hasPublicationYear "2020" @default.
- W2994710040 type Work @default.
- W2994710040 sameAs 2994710040 @default.
- W2994710040 citedByCount "33" @default.
- W2994710040 countsByYear W29947100402020 @default.
- W2994710040 countsByYear W29947100402021 @default.
- W2994710040 countsByYear W29947100402022 @default.
- W2994710040 countsByYear W29947100402023 @default.
- W2994710040 crossrefType "journal-article" @default.
- W2994710040 hasAuthorship W2994710040A5008179229 @default.
- W2994710040 hasAuthorship W2994710040A5062239258 @default.
- W2994710040 hasAuthorship W2994710040A5076099223 @default.