Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994714261> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2994714261 abstract "In recent years, iron and steel industry of China has developed rapidly, and steel surface defects recognition has attracted wide attention in the field of industrial inspection. Aiming at the problems of poor precision and low speed of traditional surface defect detection methods, we propose to use a fully learnable ensemble of Extreme Learning Machines (ELMs), which is ELM-IN-ELM, for defect classification. The Local Binary Pattern is adopted as the basic feature extraction method. The ELM-IN-ELM determines the final classification decision by automatically learning the output of M independent ELM sub-models. To further illustrate the superiority of the ELM-IN-ELM algorithm for classification, the Northeastern University (NEU) surface defect database is used to evaluate its classification effect. The experimental results demonstrate that this method works remarkably well for surface defects classification. Compared with other methods, the proposed method can identify the types of defects more accurately, which is of practical significance to steel surface defect detection." @default.
- W2994714261 created "2019-12-26" @default.
- W2994714261 creator A5044914203 @default.
- W2994714261 creator A5072523018 @default.
- W2994714261 creator A5073027766 @default.
- W2994714261 date "2019-08-01" @default.
- W2994714261 modified "2023-10-06" @default.
- W2994714261 title "Surface Defect Classification of Steels Based on Ensemble of Extreme Learning Machines" @default.
- W2994714261 cites W1991589289 @default.
- W2994714261 cites W2039708501 @default.
- W2994714261 cites W2052446636 @default.
- W2994714261 cites W2069315453 @default.
- W2994714261 cites W2078834330 @default.
- W2994714261 cites W2079343038 @default.
- W2994714261 cites W2092072518 @default.
- W2994714261 cites W2099579348 @default.
- W2994714261 cites W2111072639 @default.
- W2994714261 cites W2121971770 @default.
- W2994714261 cites W2138260443 @default.
- W2994714261 cites W2163352848 @default.
- W2994714261 cites W2163808566 @default.
- W2994714261 cites W2190002086 @default.
- W2994714261 cites W2616601017 @default.
- W2994714261 cites W2749372762 @default.
- W2994714261 cites W2793624836 @default.
- W2994714261 cites W2884563051 @default.
- W2994714261 cites W2899347851 @default.
- W2994714261 cites W2900198492 @default.
- W2994714261 cites W2913953110 @default.
- W2994714261 cites W2944303778 @default.
- W2994714261 cites W4239510810 @default.
- W2994714261 doi "https://doi.org/10.1109/wrc-sara.2019.8931807" @default.
- W2994714261 hasPublicationYear "2019" @default.
- W2994714261 type Work @default.
- W2994714261 sameAs 2994714261 @default.
- W2994714261 citedByCount "2" @default.
- W2994714261 countsByYear W29947142612020 @default.
- W2994714261 countsByYear W29947142612022 @default.
- W2994714261 crossrefType "proceedings-article" @default.
- W2994714261 hasAuthorship W2994714261A5044914203 @default.
- W2994714261 hasAuthorship W2994714261A5072523018 @default.
- W2994714261 hasAuthorship W2994714261A5073027766 @default.
- W2994714261 hasConcept C119857082 @default.
- W2994714261 hasConcept C153180895 @default.
- W2994714261 hasConcept C154945302 @default.
- W2994714261 hasConcept C192562407 @default.
- W2994714261 hasConcept C2524010 @default.
- W2994714261 hasConcept C2776799497 @default.
- W2994714261 hasConcept C33923547 @default.
- W2994714261 hasConcept C41008148 @default.
- W2994714261 hasConcept C45942800 @default.
- W2994714261 hasConceptScore W2994714261C119857082 @default.
- W2994714261 hasConceptScore W2994714261C153180895 @default.
- W2994714261 hasConceptScore W2994714261C154945302 @default.
- W2994714261 hasConceptScore W2994714261C192562407 @default.
- W2994714261 hasConceptScore W2994714261C2524010 @default.
- W2994714261 hasConceptScore W2994714261C2776799497 @default.
- W2994714261 hasConceptScore W2994714261C33923547 @default.
- W2994714261 hasConceptScore W2994714261C41008148 @default.
- W2994714261 hasConceptScore W2994714261C45942800 @default.
- W2994714261 hasLocation W29947142611 @default.
- W2994714261 hasOpenAccess W2994714261 @default.
- W2994714261 hasPrimaryLocation W29947142611 @default.
- W2994714261 hasRelatedWork W2810053714 @default.
- W2994714261 hasRelatedWork W2883828728 @default.
- W2994714261 hasRelatedWork W2941606940 @default.
- W2994714261 hasRelatedWork W3005055299 @default.
- W2994714261 hasRelatedWork W4200126462 @default.
- W2994714261 hasRelatedWork W4200409985 @default.
- W2994714261 hasRelatedWork W4281560664 @default.
- W2994714261 hasRelatedWork W4281757034 @default.
- W2994714261 hasRelatedWork W4285741730 @default.
- W2994714261 hasRelatedWork W4292969247 @default.
- W2994714261 isParatext "false" @default.
- W2994714261 isRetracted "false" @default.
- W2994714261 magId "2994714261" @default.
- W2994714261 workType "article" @default.