Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994731224> ?p ?o ?g. }
- W2994731224 endingPage "101780" @default.
- W2994731224 startingPage "101780" @default.
- W2994731224 abstract "The general public’s attitudes, demands, and expectations regarding medical AI could provide guidance for the future development of medical AI to satisfy the increasing needs of doctors and patients. The objective of this study is to investigate public perceptions, receptivity, and demands regarding the implementation of medical AI. An online questionnaire was designed to investigate the perceptions, receptivity, and demands of general public regarding medical AI between October 13 and October 30, 2018. The distributions of the current achievements, public perceptions, receptivity, and demands among individuals in different lines of work (i.e., healthcare vs non-healthcare) and different age groups were assessed by performing descriptive statistics. The factors associated with public receptivity of medical AI were assessed using a linear regression model. In total, 2,780 participants from 22 provinces were enrolled. Healthcare workers accounted for 54.3 % of all participants. There was no significant difference between the healthcare workers and non-healthcare workers in the high proportion (99 %) of participants expressing acceptance of AI (p = 0.8568), but remarkable distributional differences were observed in demands (p < 0.001 for both demands for AI assistance and the desire for AI improvements) and perceptions (p < 0.001 for safety, validity, trust, and expectations). High levels of receptivity (approximately 100 %), demands (approximately 80 %), and expectations (100 %) were expressed among different age groups. The receptivity of medical AI among the non-healthcare workers was associated with gender, educational qualifications, and demands and perceptions of AI. There was a very large gap between current availability of and public demands for intelligence services (p < 0.001). More than 90 % of healthcare workers expressed a willingness to devote time to learning about AI and participating in AI research. The public exhibits a high level of receptivity regarding the implementation of medical AI. To date, the achievements have been rewarding, and further advancements are required to satisfy public demands. There is a strong demand for intelligent assistance in many medical areas, including imaging and pathology departments, outpatient services, and surgery. More contributions are imperative to facilitate integrated and advantageous implementation in medical AI." @default.
- W2994731224 created "2019-12-26" @default.
- W2994731224 creator A5003185739 @default.
- W2994731224 creator A5003459470 @default.
- W2994731224 creator A5011575206 @default.
- W2994731224 creator A5034535783 @default.
- W2994731224 creator A5058264621 @default.
- W2994731224 creator A5058413717 @default.
- W2994731224 creator A5068392991 @default.
- W2994731224 creator A5069084441 @default.
- W2994731224 creator A5081056231 @default.
- W2994731224 creator A5088402297 @default.
- W2994731224 date "2020-01-01" @default.
- W2994731224 modified "2023-10-17" @default.
- W2994731224 title "Implementation of artificial intelligence in medicine: Status analysis and development suggestions" @default.
- W2994731224 cites W1566599962 @default.
- W2994731224 cites W1631854902 @default.
- W2994731224 cites W1929673327 @default.
- W2994731224 cites W1997866278 @default.
- W2994731224 cites W1998938793 @default.
- W2994731224 cites W2009878270 @default.
- W2994731224 cites W2011433466 @default.
- W2994731224 cites W2022295603 @default.
- W2994731224 cites W2046365492 @default.
- W2994731224 cites W2072387963 @default.
- W2994731224 cites W2101076164 @default.
- W2994731224 cites W2320890403 @default.
- W2994731224 cites W2339791380 @default.
- W2994731224 cites W2407096704 @default.
- W2994731224 cites W2421718839 @default.
- W2994731224 cites W2511284777 @default.
- W2994731224 cites W2558050786 @default.
- W2994731224 cites W2569634942 @default.
- W2994731224 cites W2582821003 @default.
- W2994731224 cites W2604186734 @default.
- W2994731224 cites W2607258421 @default.
- W2994731224 cites W2611467245 @default.
- W2994731224 cites W2641342067 @default.
- W2994731224 cites W2788633781 @default.
- W2994731224 cites W2791920958 @default.
- W2994731224 cites W2797510181 @default.
- W2994731224 cites W2862995356 @default.
- W2994731224 cites W2883790289 @default.
- W2994731224 cites W2889377580 @default.
- W2994731224 cites W2896817483 @default.
- W2994731224 cites W2900248733 @default.
- W2994731224 cites W2900266642 @default.
- W2994731224 cites W2905441841 @default.
- W2994731224 cites W2906295032 @default.
- W2994731224 cites W2908201961 @default.
- W2994731224 cites W2911605224 @default.
- W2994731224 cites W2947151330 @default.
- W2994731224 cites W4253468390 @default.
- W2994731224 cites W4254752983 @default.
- W2994731224 doi "https://doi.org/10.1016/j.artmed.2019.101780" @default.
- W2994731224 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31980086" @default.
- W2994731224 hasPublicationYear "2020" @default.
- W2994731224 type Work @default.
- W2994731224 sameAs 2994731224 @default.
- W2994731224 citedByCount "41" @default.
- W2994731224 countsByYear W29947312242020 @default.
- W2994731224 countsByYear W29947312242021 @default.
- W2994731224 countsByYear W29947312242022 @default.
- W2994731224 countsByYear W29947312242023 @default.
- W2994731224 crossrefType "journal-article" @default.
- W2994731224 hasAuthorship W2994731224A5003185739 @default.
- W2994731224 hasAuthorship W2994731224A5003459470 @default.
- W2994731224 hasAuthorship W2994731224A5011575206 @default.
- W2994731224 hasAuthorship W2994731224A5034535783 @default.
- W2994731224 hasAuthorship W2994731224A5058264621 @default.
- W2994731224 hasAuthorship W2994731224A5058413717 @default.
- W2994731224 hasAuthorship W2994731224A5068392991 @default.
- W2994731224 hasAuthorship W2994731224A5069084441 @default.
- W2994731224 hasAuthorship W2994731224A5081056231 @default.
- W2994731224 hasAuthorship W2994731224A5088402297 @default.
- W2994731224 hasConcept C105795698 @default.
- W2994731224 hasConcept C126322002 @default.
- W2994731224 hasConcept C138816342 @default.
- W2994731224 hasConcept C15744967 @default.
- W2994731224 hasConcept C159110408 @default.
- W2994731224 hasConcept C160735492 @default.
- W2994731224 hasConcept C169760540 @default.
- W2994731224 hasConcept C17744445 @default.
- W2994731224 hasConcept C199539241 @default.
- W2994731224 hasConcept C26760741 @default.
- W2994731224 hasConcept C2777678268 @default.
- W2994731224 hasConcept C2986711855 @default.
- W2994731224 hasConcept C33923547 @default.
- W2994731224 hasConcept C39896193 @default.
- W2994731224 hasConcept C509550671 @default.
- W2994731224 hasConcept C512399662 @default.
- W2994731224 hasConcept C71924100 @default.
- W2994731224 hasConcept C75630572 @default.
- W2994731224 hasConceptScore W2994731224C105795698 @default.
- W2994731224 hasConceptScore W2994731224C126322002 @default.
- W2994731224 hasConceptScore W2994731224C138816342 @default.
- W2994731224 hasConceptScore W2994731224C15744967 @default.
- W2994731224 hasConceptScore W2994731224C159110408 @default.