Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994735581> ?p ?o ?g. }
- W2994735581 abstract "Angiogenesis is a critical process essential for optimal bone healing. Several in vitro and in vivo systems have been previously used to elucidate some of the mechanisms involved in the process of angiogenesis, and at the same time, to test potential therapeutic agents and bioactive factors that play important roles in neovascularization. Computed tomography (CT) is a noninvasive imaging technique that has recently allowed investigators to obtain a diverse range of high-resolution, three-dimensional characterization of structures, such as bone formation within bony defects. Unfortunately, to date, angiogenesis evaluation relies primarily on histology, or ex vivo imaging and few studies have utilized CT to qualitatively and quantitatively study the vascular response during bone repair. In the current study a clinical CT-based technique was used to evaluate the effects of rhBMP-2 eluting graft treatment on soft tissue vascular architecture surrounding a large segmental bone defect model in the minipig mandible. The objective of this study was to demonstrate the efficacy of contrast-enhanced, clinical 64-slice CT technology in extracting quantitative metrics of vascular architecture over a 12-week period. The results of this study show that the presence of rhBMP-2 had a positive effect on vessel volume from 4 to 12 weeks, which was explained by a concurrent increase in vessel number, which was also significantly higher at 4 weeks for the rhBMP-2 treatment. More importantly, analysis of vessel architecture showed no changes throughout the duration of the study, indicating therapeutic safety. This study validates CT analysis as a relevant imaging method for quantitative and qualitative analysis of morphological characteristics of vascular tissue around a bone healing site. Also important, the study shows that CT technology can be used in large animal models and potentially be translated into clinical models for the development of improved methods to evaluate tissue healing and vascular adaptation processes over the course of therapy. This methodology has demonstrated sensitivity to tracking spatial and temporal changes in vascularization and has the potential to be applied to studying changes in other high-contrast tissues as well. Impact Statement Tissue engineering solutions depend on the surrounding tissue response to support regeneration. The inflammatory environment and surrounding vascular supply are critical to determining if therapies will survive, engraftment occurs, and native physiology is restored. This study for the first time evaluates the blood vessel network changes in surrounding soft tissue to a bone defect site in a large animal model, using clinically available computed tomography tools and model changes in vessel number, size, and architecture. While this study focuses on rhBMP2 delivery impacting surrounding vasculature, this validated method can be extended to studying the vascular network changes in other tissues as well." @default.
- W2994735581 created "2019-12-26" @default.
- W2994735581 creator A5003317806 @default.
- W2994735581 creator A5013769177 @default.
- W2994735581 creator A5029381500 @default.
- W2994735581 creator A5035769294 @default.
- W2994735581 creator A5058159973 @default.
- W2994735581 creator A5062684903 @default.
- W2994735581 creator A5067774945 @default.
- W2994735581 date "2019-12-01" @default.
- W2994735581 modified "2023-10-17" @default.
- W2994735581 title "Quantifying Vascular Changes Surrounding Bone Regeneration in a Porcine Mandibular Defect Using Computed Tomography" @default.
- W2994735581 cites W112142731 @default.
- W2994735581 cites W1499209190 @default.
- W2994735581 cites W1860912492 @default.
- W2994735581 cites W1871221498 @default.
- W2994735581 cites W1917177567 @default.
- W2994735581 cites W1967631291 @default.
- W2994735581 cites W1971426933 @default.
- W2994735581 cites W1971892663 @default.
- W2994735581 cites W1978410742 @default.
- W2994735581 cites W1979273512 @default.
- W2994735581 cites W1981584086 @default.
- W2994735581 cites W1982859926 @default.
- W2994735581 cites W1984804829 @default.
- W2994735581 cites W1985111027 @default.
- W2994735581 cites W1986595892 @default.
- W2994735581 cites W1989116046 @default.
- W2994735581 cites W1990430930 @default.
- W2994735581 cites W1991586090 @default.
- W2994735581 cites W1993235364 @default.
- W2994735581 cites W1993765543 @default.
- W2994735581 cites W1997130210 @default.
- W2994735581 cites W1999790410 @default.
- W2994735581 cites W2001935059 @default.
- W2994735581 cites W2014756661 @default.
- W2994735581 cites W2014949387 @default.
- W2994735581 cites W2021429147 @default.
- W2994735581 cites W2024576672 @default.
- W2994735581 cites W2025192405 @default.
- W2994735581 cites W2025283556 @default.
- W2994735581 cites W2025422403 @default.
- W2994735581 cites W2028305494 @default.
- W2994735581 cites W2030013280 @default.
- W2994735581 cites W2031145045 @default.
- W2994735581 cites W2033016180 @default.
- W2994735581 cites W2033385915 @default.
- W2994735581 cites W2033856581 @default.
- W2994735581 cites W2035592395 @default.
- W2994735581 cites W2038852684 @default.
- W2994735581 cites W2041840160 @default.
- W2994735581 cites W2050724276 @default.
- W2994735581 cites W2050841885 @default.
- W2994735581 cites W2052479995 @default.
- W2994735581 cites W2057707024 @default.
- W2994735581 cites W2059873109 @default.
- W2994735581 cites W2061551938 @default.
- W2994735581 cites W2066749771 @default.
- W2994735581 cites W2068668408 @default.
- W2994735581 cites W2073075100 @default.
- W2994735581 cites W2073576018 @default.
- W2994735581 cites W2075425779 @default.
- W2994735581 cites W2075927574 @default.
- W2994735581 cites W2079807957 @default.
- W2994735581 cites W2081416915 @default.
- W2994735581 cites W2083984121 @default.
- W2994735581 cites W2086616549 @default.
- W2994735581 cites W2087456683 @default.
- W2994735581 cites W2089361256 @default.
- W2994735581 cites W2092787640 @default.
- W2994735581 cites W2095132685 @default.
- W2994735581 cites W2097180184 @default.
- W2994735581 cites W2099355940 @default.
- W2994735581 cites W2115050897 @default.
- W2994735581 cites W2126754939 @default.
- W2994735581 cites W2133059825 @default.
- W2994735581 cites W2137029911 @default.
- W2994735581 cites W2140459402 @default.
- W2994735581 cites W2145483033 @default.
- W2994735581 cites W2151615254 @default.
- W2994735581 cites W2153202870 @default.
- W2994735581 cites W2158409077 @default.
- W2994735581 cites W2158734722 @default.
- W2994735581 cites W2169724630 @default.
- W2994735581 cites W2185873440 @default.
- W2994735581 cites W2225056950 @default.
- W2994735581 cites W2260245578 @default.
- W2994735581 cites W2327117475 @default.
- W2994735581 cites W2533418857 @default.
- W2994735581 cites W2564655258 @default.
- W2994735581 cites W2626580617 @default.
- W2994735581 cites W2808782307 @default.
- W2994735581 cites W2894389017 @default.
- W2994735581 cites W2964832548 @default.
- W2994735581 cites W4242801734 @default.
- W2994735581 cites W811898635 @default.
- W2994735581 doi "https://doi.org/10.1089/ten.tec.2019.0205" @default.
- W2994735581 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7058991" @default.
- W2994735581 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31850839" @default.
- W2994735581 hasPublicationYear "2019" @default.